(本题满分13分,第(1)小题5分,第(2)小题8分)
设复数
(1)当
时,求
的值;
(2)若复数
所对应的点在直线
上,求
的值。
科目:高中数学 来源: 题型:
(本题满分13分)本题共有2个小题,第一个小题满分5分,第2个小题满分8分。
已知数列
的前
项和为
,且
,![]()
(1)证明:
是等比数列;
(2)求数列
的通项公式,并求出n为何值时,
取得最小值,并说明理由。
(2)
=
n=15取得最小值
查看答案和解析>>
科目:高中数学 来源:2011年福建省高二上学期期末考试数学理卷 题型:解答题
(本题满分13分)在4月份(按30天计算),有一新款服装投入某商场销售,4月1日该款服装仅销售出10件,第二天售出35件,第三天销售60件,然后,每天售出的件数分别递增25件,直到4月12日销售量达到最大,以后每天销售的件数分别递减15件.
(Ⅰ)问到月底该服装共销售出几件.
(Ⅱ)按规律,当该商场销售此服装的日销售量达到150件以上时,社会上就流行,问该款服装在社会上流行是否超过14天?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分13分,第(1)小题6分,第(2)小题7分)
为了降低能源损耗,最近上海对新建住宅的屋顶和外墙都要求建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度
(单位:cm)满足关系:
,若不建隔热层,每年能源消耗费用为8万元.设
为隔热层建造费用与20年的能源消耗费用之和.
(1)求
的值及
的表达式;
(2)隔热层修建多厚时,总费用
达到最小,并求最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com