精英家教网 > 高中数学 > 题目详情

若不等式的解集为,函数的定义域为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函f(x)=ex-x (e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
12
≤x≤2
}且M∩P≠∅求实数a的取值范围;
(3)已知n∈N+,且Sn=∫n0f(x)dx,是否存在等差数列{an}和首项为f(I)公比大于0的等比数列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,请求出数列{an}、{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函f(x)=ex-x (e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|数学公式}且M∩P≠∅求实数a的取值范围;
(3)已知n∈N+,且Sn=∫n0f(x)dx,是否存在等差数列{an}和首项为f(I)公比大于0的等比数列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,请求出数列{an}、{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:贵溪市模拟 题型:解答题

已知函f(x)=ex-x (e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|
1
2
≤x≤2
}且M∩P≠∅求实数a的取值范围;
(3)已知n∈N+,且Sn=∫n0f(x)dx,是否存在等差数列{an}和首项为f(I)公比大于0的等比数列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,请求出数列{an}、{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市东城区东直门中学高三数学提高测试试卷7(理科)(解析版) 题型:解答题

已知函f(x)=ex-x (e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|}且M∩P≠∅求实数a的取值范围;
(3)已知n∈N+,且Sn=∫nf(x)dx,是否存在等差数列{an}和首项为f(I)公比大于0的等比数列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,请求出数列{an}、{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江西省重点中学联盟高三第一次联考数学试卷(理科)(解析版) 题型:解答题

已知函f(x)=ex-x (e为自然对数的底数).
(1)求f(x)的最小值;
(2)不等式f(x)>ax的解集为P,若M={x|}且M∩P≠∅求实数a的取值范围;
(3)已知n∈N+,且Sn=∫nf(x)dx,是否存在等差数列{an}和首项为f(I)公比大于0的等比数列{bn},使得a1+a2+…+an+b1+b2+…bn=Sn?若存在,请求出数列{an}、{bn}的通项公式.若不存在,请说明理由.

查看答案和解析>>

同步练习册答案