精英家教网 > 高中数学 > 题目详情

对于各数互不相等的整数数组(i1,i2,i3…in) (n是不小于3的正整数),对于任意的p,q∈{1,2,3,…,n},当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于________;若数组(i1,i2,i3,…,in)中的逆序数为n,则数组(in,in-1,…,i1)中的逆序数为________.

4    
分析:由于数组中包含的数字比较少,数组(2,4,3,1)中的逆序可以列举出共有4个,对应于含有n个数字的数组中,首先做出任取两个数字时可以组成的数对,减去逆序的个数,得到结果.
解答:由题意知数组(2,4,3,1)中的逆序有
2,1;4,1;3,1;4,3,
∴逆序数是4,
∵若数组(i1,i2,i3,…,in)中的逆序数为n,
∵这个数组中可以组成个数对,
∴数组(in,in-1,…,i1)中的逆序数为=
故答案为:4;
点评:本题是一个重新定义问题,解题时需要读懂题意,才能做题,本题考查排列组合数的应用,考查列举法,是一个非常新颖的问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于各数互不相等的整数数组(i1,i2,i3…in) (n是不小于3的正整数),对于任意的p,q∈{1,2,3,…,n},当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组(2,4,3,1)中的逆序数等于
 
;若数组(i1,i2,i3,…,in)中的逆序数为n,则数组(in,in-1,…,i1)中的逆序数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

14、对于各数互不相等的整数数组(i1,i2,…,in)(n是不小于2的正整数),如果在p<q时,有ip>iq,则称ip与iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”.例如,数组(2,4,3,1)中有逆序“2,1”,“4,3”,“4,1”,“3,1”,其“逆序数”等于4.若各数互不相等的正整数数组(a1,a2,a3,a4,a5,a6,a7,a8)的“逆序数”是2,则(a8,a7,a6,a5,a4,a3,a2)的“逆序数”至少是
26

查看答案和解析>>

科目:高中数学 来源: 题型:

对于各数互不相等的正数数组(i1,i2,…,in)(n是不小于2的正整数),如果在p<q时有ip>iq,则称ip与iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为此数组的“逆序数”.例如,数组(2,4,3,1)中有逆序“2,1”,“4,3”,“4,1”,“3,1”,其“逆序数”等于4.若各数互不相等的正数数组(a1,a2,a3,a4)的“逆序数”是2,则(a4,a3,a2,a1)的“逆序数”是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•沅江市模拟)对于各数互不相等的正数数组(i1,i2,…,in)(n是不小于2的正整数),如果在p<q时有ip>iq,则称ip与iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为此数组的“逆序数”.例如,数组(2,4,3,1)中有逆序“2,1”,“4,3”,“4,1”,“3,2”,其“逆序数”等于4.若各数互不相等的正数数组(a1,a2,a3,a4,a5,a6)的“逆序数”是2,则(a6,a5,a4,a3,a2,a1)的“逆序数”是
13
13

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•宝山区一模)对于各数互不相等的正数数组(i1,i2,…,in)(n是不小于2的正整数),如果在p<q时有ip>iq,则称ip与iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为此数组的“逆序数”. 例如,数组(2,4,3,1)中有逆序“2,1”,“4,3”,“4,1”,“3,1”,其“逆序数”等于4. 若各数互不相等的正数数组(a1,a2,a3,a4)的“逆序数”是2,则(a4,a3,a2,a1)的“逆序数”是
4
4

查看答案和解析>>

同步练习册答案