已知数列
满足:
,点
在直线
上,数列
满足:
且
.
(I)求
的通项公式;
(II)求证:数列
为等比数列;
(3)求
的通项公式;并探求数列
的前
和的最小值
科目:高中数学 来源: 题型:
定义:若数列
满足
,则称数列
为“平方递推数列”。已知数列
中,
,点
在函数
的图像上,其中
为正整数。
(1)证明:数列
是“平方递推数列”,且数列
为等比数列。
(2)设(1)中“平方递推数列”的前
项之积为
,即![]()
,求数列
的通项及
关于
的表达式。
(3)记
,求数列
的前
项之和
,并求使![]()
的
的最小值。
查看答案和解析>>
科目:高中数学 来源:2013-2014学年山东省淄博市高三3月模拟考试理科数学试卷(解析版) 题型:解答题
若数列
满足
,则称数列
为“平方递推数列”.已知数列
中,
,点
在函数
的图象上,其中
为正整数.
(1)证明数列
是“平方递推数列”,且数列
为等比数列;
(2)设(1)中“平方递推数列”的前
项积为
,
即
,求
;
(3)在(2)的条件下,记
,求数列
的前
项和
,并求使
的
的最小值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年湖北省等八校高三第一次联考文科数学试卷(解析版) 题型:解答题
若数列
满足
,则称数列
为“平方递推数列”.已知数列
中,
,点
在函数
的图象上,其中
为正整数.
(Ⅰ)证明数列
是“平方递推数列”,且数列
为等比数列;
(Ⅱ)设(Ⅰ)中“平方递推数列”的前
项积为
,即
,求
;
(Ⅲ)在(Ⅱ)的条件下,记
,求数列
的前
项和
,并求使
的
的最小值.
查看答案和解析>>
科目:高中数学 来源:2010-2011年黑龙江省高一下学期期中考试理科数学 题型:选择题
已知数列
满足
,
,点
是平面上不在
上的任意一点,
上有不重合的三点
、
、
,又知
,则
A.1004 B.2010 C.2009 D.1005 ( )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com