精英家教网 > 高中数学 > 题目详情
设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=
π
4
,若AB=4,BC=
2
,则Γ的两个焦点之间的距离为______.

精英家教网
如图,设椭圆的标准方程为
x2
a2
+
y2
b2
=1

由题意知,2a=4,a=2.
∵∠CBA=
π
4
,BC=
2
,∴点C的坐标为C(-1,1),
因点C在椭圆上,∴
(-1)2
4
+
12
b2
=1

∴b2=
4
3

∴c2=a2-b2=4-
4
3
=
8
3
,c=
2
6
3

则Γ的两个焦点之间的距离为
4
6
3

故答案为:
4
6
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆x2+y2=1与x轴正半轴的交点为F,AB为该圆的一条弦,直线AB的方程为x=m.记以AB为直径的圆为⊙C,记以点F为右焦点、短半轴长为b(b>0,b为常数)的椭圆为D.
(1)求⊙C和椭圆D的标准方程;
(2)当b=1时,求证:椭圆D上任意一点都不在⊙C的内部;
(3)已知点M是椭圆D的长轴上异于顶点的任意一点,过点M且与x轴不垂直的直线交椭圆D于P、Q两点(点P在x轴上方),点P关于x轴的对称点为N,设直线QN交x轴于点L,试判断
OM
OL
是否为定值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:江苏期末题 题型:解答题

在平面直角坐标系xOy中,已知圆x2+y2=1与x轴正半轴的交点为F,AB为该圆的一条弦,直线AB的方程为x=m.记以AB为直径的圆为⊙C,记以点F为右焦点、短半轴长为b(b>0,b为常数)的椭圆为D.
(1)求⊙C和椭圆D的标准方程;
(2)当b=1时,求证:椭圆D上任意一点都不在⊙C的内部;
(3)已知点M是椭圆D的长轴上异于顶点的任意一点,过点M且与x轴不垂直的直线交椭圆D于P、Q两点(点P在x轴上方),点P关于x轴的对称点为N,设直线QN交x轴于点L,试判断是否为定值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省常州市教育学会高三1月学业水平监测数学试题(解析版) 题型:解答题

在平面直角坐标系xOy中,已知圆x2+y2=1与x轴正半轴的交点为F,AB为该圆的一条弦,直线AB的方程为x=m.记以AB为直径的圆为⊙C,记以点F为右焦点、短半轴长为b(b>0,b为常数)的椭圆为D.
(1)求⊙C和椭圆D的标准方程;
(2)当b=1时,求证:椭圆D上任意一点都不在⊙C的内部;
(3)已知点M是椭圆D的长轴上异于顶点的任意一点,过点M且与x轴不垂直的直线交椭圆D于P、Q两点(点P在x轴上方),点P关于x轴的对称点为N,设直线QN交x轴于点L,试判断是否为定值?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年湖北黄冈联考理)已知AB是椭圆=1的长轴,若把线段AB五等份,过每个分点作AB的垂线,分别与椭圆的上半部分相交于C、D、E、G四点,设F是椭圆的左焦点,则的值是(   )

A.15                   B.16                   C.18                   D.20

查看答案和解析>>

科目:高中数学 来源:江西省上高二中09-10学年高二第五次月考(理) 题型:选择题

 已知AB是椭圆=1的长轴,若把线段AB五等份,过每个分点作AB的垂线,分别与椭圆的上半部分相交于C、D、E、G四点,设F是椭圆的左焦点,则的值是()

A.15           B.16           C.18           D.20

 

查看答案和解析>>

同步练习册答案