精英家教网 > 高中数学 > 题目详情

设△ABC的内角A,B,C所对的边长分别为a,b,c,且数学公式
(Ⅰ)求角A的大小; 
(Ⅱ)若角数学公式,BC边上的中线AM的长为数学公式,求△ABC的内切圆半径r与外接圆半径R的比值.

解:(Ⅰ)∵


.….(2分)
,∴,因为0<A<π则.….(4分)
(Ⅱ)由(1)知,所以AC=BC,
设AC=x,在△AMC中由余弦定理得AC2+MC2-2AC•MCcosC=AM2
,解得x=2,….(8分)

.…(12分)
分析:(Ⅰ)通过已知条件利用正弦定理以及两角和与差的三角函数,化简求出角A余弦函数值,然后求出A的大小;
(Ⅱ)利用角,BC边上的中线AM的长为,通过余弦定理求出AC的长,通过三角形面积求出△ABC的内切圆半径r,通过正弦定理求出三角形外接圆半径R,然后求解比值.
点评:本题考查两角和与差的三角函数,正弦定理以及余弦定理的应用,三角形的面积公式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)与
n
=(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C的对边分别为a、b、c.若b=
3
,c=1,B=60°
,则角C=
 
°.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C的对边分别为a,b,c
(1)求证:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,试求
tanA
tanB
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函数f(x)的最大值和最小值,并写出相应的x的值;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a、b、c,满足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周长;
(2)若直线l:
x
a
+
y
b
=1
恒过点D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步练习册答案