(12分)已知椭圆C:(a>b>0)的一个顶点为A(2,0),离心率为,直线y=k(x-1)与椭圆C交于不同的两点M、N.
①求椭圆C的方程.
②当⊿AMN的面积为时,求k的值.
① .②k=±1.
【解析】
试题分析:(Ⅰ)根据椭圆一个顶点为A (2,0),离心率为 ,可建立方程组,从而可求椭圆C的方程;
(Ⅱ)直线y=k(x-1)与椭圆C联立 y=k(x-1)与,消元可得(1+2k2)x2-4k2x+2k2-4=0,从而可求|MN|,A(2,0)到直线y=k(x-1)的距离,利用△AMN的面积,可求k的值.
解:① 由题意得 a=2
=,
,
解得b=.所以椭圆C的方程为.
由② y=k(x-1), 得
设点M、N的坐标分别为则
所以
又因为点A(2,0)到直线y=k(x-1)的距离d=
所以⊿AMN的面积为s=∣MN∣.d==,
解得k=±1.
考点:本试题主要考查了椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算。
点评:解决该试题的关键是正确求出|MN|,通过设直线与圆锥曲线联立方程组得到韦达定理表示得到线段的长度。
科目:高中数学 来源:2010-2011学年福建省龙岩市高三(上)期末质量检查一级达标数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(四川卷解析版) 题型:解答题
(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.
(I)求椭圆C的离心率:
(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江西省高三第七次月考理科数学 题型:解答题
已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:选择题
已知椭圆C:(a>b>0)的离心率为,过右焦点F且斜率为k(k>0)的直线与椭圆C相交于A、B两点,若。则 ( )
(A)1 (B)2 (C) (D)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com