精英家教网 > 高中数学 > 题目详情
已知椭圆+=1(a>0,b>0),A是椭圆长轴的一个端点,B是椭圆短轴的一个端点,F为椭圆的一个焦点.若AB⊥BF,则该椭圆的离心率为( )
A.
B.
C.
D.
【答案】分析:先AB于BF垂直判断出两直线的斜率乘积为-1,进而求得b于a,c的关系,利用a2-c2=b2进而替换消去b,进而求得a和c的关系式,则椭圆的离心率可求.
解答:解:∵AB⊥BF,
∴kAB•kBF=-1,即•(-)=-1,即b2=ac,
∴a2-c2=ac,两边同除以a2,得e2+e-1=0,
∴e=(舍负),
故选B.
点评:本题主要考查了椭圆的简单性质.应熟练掌握椭圆方程中a,b和c的关系,及离心率,准线方程,焦点坐标等基础知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆=1(ab>0)的离心率为,则椭圆方程为(  )

A.=1

B.=1

C.=1

D.=1

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖北省武汉市六校高三(上)第一次联考数学试卷(文科)(解析版) 题型:填空题

已知椭圆+=1(a>b>0)的中心为O,右焦点为F、右顶点为A,右准线与x轴的交点为H,则的最大值为   

查看答案和解析>>

科目:高中数学 来源:2012年安徽省合肥八中高考数学一模试卷(理科)(解析版) 题型:解答题

已知椭圆+=1(a>b>0)的中心为O,右焦点为F、右顶点为A,右准线与x轴的交点为H,则的最大值为   

查看答案和解析>>

科目:高中数学 来源:2012年安徽省合肥八中高考数学一模试卷(文科)(解析版) 题型:解答题

已知椭圆+=1(a>b>0)的中心为O,右焦点为F、右顶点为A,右准线与x轴的交点为H,则的最大值为   

查看答案和解析>>

科目:高中数学 来源:2010年河南省高二上学期12月份考试数学卷(文理) 题型:选择题

已知椭圆=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P,若(应为PB),则离心率为

A、         B、         C、           D、

 

查看答案和解析>>

同步练习册答案