精英家教网 > 高中数学 > 题目详情
17.已知O是△ABC中的一点,$\overrightarrow{OA}$+3$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow 0$,则△OAB与△OAC的面积之比为(  )
A.1:3B.1C.5:3D.3:5

分析 以O为原点,作单位向量$\overrightarrow{O{A}^{'}}$,$\overrightarrow{O{B}^{'}}$,$\overrightarrow{O{C}^{'}}$,让它们两两夹角为120°,在OA'上取A点,使$\overrightarrow{O{A}^{'}}$=$\overrightarrow{OA}$,在OB'上取B点,使$\overrightarrow{O{B}^{'}}=3\overrightarrow{OB}$,在OC'上取C点,使$\overrightarrow{O{C}^{'}}=5\overrightarrow{OC}$,由此能求出△OAB与△OAC的面积之比.

解答 解:∵O是△ABC中的一点,$\overrightarrow{OA}+3\overrightarrow{OB}+5\overrightarrow{OC}=\overrightarrow 0$,
∴以O为原点,作单位向量$\overrightarrow{O{A}^{'}}$,$\overrightarrow{O{B}^{'}}$,$\overrightarrow{O{C}^{'}}$,让它们两两夹角为120°,
则$\overrightarrow{O{A}^{'}}+\overrightarrow{O{B}^{'}}+\overrightarrow{O{C}^{'}}$=$\overrightarrow{0}$,
在OA'上取A点,使$\overrightarrow{O{A}^{'}}$=$\overrightarrow{OA}$,
在OB'上取B点,使$\overrightarrow{O{B}^{'}}=3\overrightarrow{OB}$,
在OC'上取C点,使$\overrightarrow{O{C}^{'}}=5\overrightarrow{OC}$,
所以$\overrightarrow{OA}$+3$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow 0$,
因为S△ABC=$\frac{1}{2}absinC$,
所以△OAB与△OAC的面积之比为:
$\frac{{S}_{△OAB}}{{S}_{△OAC}}$=$\frac{\frac{1}{2}×|\overrightarrow{OA}|•|\overrightarrow{OB}|×sin120°}{\frac{1}{2}×|\overrightarrow{OA}|×|\overrightarrow{OC}|×sin120°}$=$\frac{|\overrightarrow{OB}|}{|\overrightarrow{OC}|}$=$\frac{\frac{1}{3}}{\frac{1}{5}}$=5:3.
故选:C.

点评 本题考查两个三角形面积之比的求法,是中档题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.$\frac{sin11°+cos75°sin64°}{cos11°-sin75°sin64°}$=$2+\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在下列给出的命题中,所有正确命题的序号为①②.
①函数y=2x3-3x+1的图象关于点(0,1)成中心对称;
②对?x,y∈R,若x+y≠0,则x≠1,或y≠-1;
③若实数x,y满足x2+y2=1,则$\frac{y}{x+2}$的最大值为$\sqrt{3}$;
④若△ABC为钝角三角形,∠C为钝角,则sinA>cosB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标标系xoy中,已知曲线${C_1}:\left\{{\begin{array}{l}{x=1+cosα}\\{y={{sin}^2}α-\frac{9}{4}}\end{array}}\right.$(α为参数,α∈R),在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线${C_2}:ρsin(θ+\frac{π}{4})$=$-\frac{{\sqrt{2}}}{2}$,曲线C3:ρ=2cosθ.
(Ⅰ)求曲线C1与C2的交点M的直角坐标;
(Ⅱ)设A,B分别为曲线C2,C3上的动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知长方体ABCD-A1B1C1D1,其中AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后.得到如图所示的,且这个几何体的体积为$\frac{40}{3}$.
(1)求几何体ABCD-A1C1D1的表面积;
(2)若点P在线段BC1上,且A1P⊥C1D,求线段A1P的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知不等式$\frac{{{2^x}+1}}{3}>1-\frac{{{2^x}-1}}{2}$的解集为M,则下列说法正确的是(  )
A.{0}⊆MB.M=∅C.-1∈MD.2∈M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=sinx•cosx+{sin^2}x-\frac{1}{2}$.
(1)求函数f(x)的最小正周期以及单调递增区间;
(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的$\frac{1}{2}$,把所得图象向左平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,求函数y=g(x)在$(-\frac{π}{4},0)$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数$y=\sqrt{{{log}_2}(x-3)}$的定义域是(  )
A.(3,+∞)B.(3,4]C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.同时抛掷两个骰子(各个面上分别标有数字1,2,3,4,5,6),计算:
(1)向上的数相同的概率.
(2)向上的数之积为偶数的概率.

查看答案和解析>>

同步练习册答案