精英家教网 > 高中数学 > 题目详情
六人按下列要求站一横排,分别有多少种不同的站法?
(1)甲不站两端;
(2)甲、乙必须相邻;
(3)甲、乙不相邻;
(4)甲、乙之间间隔两人;
(5)甲、乙站在两端;
(6)甲不站左端,乙不站右端.
(1) 480(2)240 (3) 480(4)144(5)48(6)504
(1)方法一 要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A种站法,然后其余5人在另外5个位置上作全排列有A种站法,根据分步计数原理,共有站法:A·A=480(种).
方法二 由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A种站法,然后中间4人有A种站法,根据分步计数原理,共有站法:A·A=480(种).
方法三 若对甲没有限制条件共有A种站法,甲在两端共有2A种站法,从总数中减去这两种情况的排列数,即共有站法:A-2A=480(种).
(2)方法一 先把甲、乙作为一个“整体”,看作一个人,和其余4人进行全排列有A种站法,再把甲、乙进行全排列,有A种站法,根据分步计数原理,共有A·A=240(种)站法.
方法二 先把甲、乙以外的4个人作全排列,有A种站法,再在5个空档中选出一个供甲、乙放入,有A种方法,最后让甲、乙全排列,有A种方法,共有A·A·A=240(种).
(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有A种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有A种站法,故共有站法为A·A=480(种).
也可用“间接法”,6个人全排列有A种站法,由(2)知甲、乙相邻有A·A=240种站法,所以不相邻的站法有A-A·A=720-240=480(种).
(4)方法一 先将甲、乙以外的4个人作全排列,有A种,然后将甲、乙按条件插入站队,有3A种,故共有A·(3A)=144(种)站法.
方法二 先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有A种,然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列有A种方法,最后对甲、乙进行排列,有A种方法,故共有A·A·A=144(种)站法.
(5)方法一 首先考虑特殊元素,甲、乙先站两端,有A种,再让其他4人在中间位置作全排列,有A种,根据分步计数原理,共有A·A=48(种)站法.
方法二 首先考虑两端两个特殊位置,甲、乙去站有A种站法,然后考虑中间4个位置,由剩下的4人去站,有A种站法,由分步计数原理共有A·A=48(种)站法.
(6)方法一 甲在左端的站法有A种,乙在右端的站法有A种,且甲在左端而乙在右端的站法有A种,共有A-2A+A=504(种)站法.
方法二 以元素甲分类可分为两类:①甲站右端有A种站法,②甲在中间4个位置之一,而乙不在右端有A·A·A 种,故共有A+A·A·A=504(种)站法.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若n∈N,n<20,则(20-n)(21-n)(22-n)…(29-n)(30-n)等于(      )
A.B.C.D.?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果自然数的各位数字之和等于7,那么称为“吉祥数”.将所有“吉祥数”从小到大排成一列     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?
(1)只有一名女生;
(2)两队长当选;
(3)至少有一名队长当选;
(4)至多有两名女生当选.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将2个a和2个b共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有       种(用数字作答)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某校要从高三的六个班中选出8名同学参加市中学生英语口语演讲,每班至少选1人,则这8个名额的分配方案共有______________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(改编题)
现从某校名学生中选出人分别参加高中“数学”、“物理”、“化学”竞赛,要求每科至少有人参加,且每人只参加科竞赛,则不同的参赛方案的种数是(  )                        
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

2个男生和4个女生排成一排,其中男生既不相邻也不排两端的不同排法共有多少种?

查看答案和解析>>

同步练习册答案