【题目】若集合A={x|log4x≤
},B={x|(x+3)( x﹣1)≥0},则A∩(RB)=( )
A.(0,1]
B.(0,1)
C.[1,2]
D.[0,1]
科目:高中数学 来源: 题型:
【题目】如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,FD∥EA,且
. ![]()
(Ⅰ)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.
(Ⅱ)求直线EB与平面ECF所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在海岸A处,发现北偏东
方向,距离A为
n mile的B处有一艘走私船,在A处北偏西
方向,距离A为2 n mile的C处有一艘缉私艇奉命以
n mile / h的速度追截走私船,此时,走私船正以10 n mile / h的速度从B处向北偏东
方向逃窜,问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间。(本题解题过程中请不要使用计算器,以保证数据的相对准确和计算的方便)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:(x+1)(x-5)≤0,命题q:1-m≤x<1+m(m>0).
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,如果p和q有且仅有一个真命题,求实数x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某海滨浴场海浪的高度
(米)是时间
的(
,单位:小时)函数,记作
,下表是某日各时的浪高数据:
| 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
经长期观察,
的曲线,可以近似地看成函数
的图象.
(1)根据以上数据,求出函数
近似表达式;
(2)依据规定,当海浪高度高于
米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午
时至晚上
时之间,有多少时间可供冲浪者进行运动?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),直线
的参数方程为
(
为参数),且直线
与曲线
交于
两点,以直角坐标系的原点为极点,以
轴的正半轴为极轴建立极坐标系.
(1)求曲线
的极坐标方程;
(2) 已知点
的极坐标为
,求
的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=23x.
(1)证明:f(x)-g(x)=23-x,并求函数f(x),g(x)的解析式;
(2)解关于x不等式:g(x2+2x)+g(x-4)>0;
(3)若对任意x∈R,不等式f(2x)≥mf(x)-4恒成立,求实数m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|﹣
x,(a>0). (Ⅰ)若a=3,解关于x的不等式f(x)<0;
(Ⅱ)若对于任意的实数x,不等式f(x)﹣f(x+a)<a2+
恒成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com