精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
9
-
y2
16
=1
的左右焦点分别为F1,F2,定点A(1,3),点P在双曲线的右支上运动,则|PF1|+|PA|的最小值等于
11
11
分析:依题意,可求得F1(-5,0),F2(5,0),P在双曲线的右支上,利用双曲线的定义|PF1|-|PF2|=6,可求得|PF1|=|PF2|+6,从而可求得|PF1|+|PA|的最小值.
解答:解:∵P在双曲线
x2
9
-
y2
16
=1的右支上,
∴|PF1|-|PF2|=6,
∴|PF1|=|PF2|+6,又A(1,3),双曲线右焦点F2(5,0),
∴|PF1|+|PA|
=|PF2|+6+|PA|
≥|AF2|+6
=
(5-1)2+(0-3)2
+6
=5+6
=11(当且仅当A、P、F2三点共线时取“=”).
故答案为:11.
点评:本题考查双曲线的简单性质,利用双曲线的定义将|PF1|转化为|PF2|+6是关键,考查转化思想与应用不等式的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•铁岭模拟)已知双曲线
x2
9
-
y2
m
=1的一个焦点在圆x2+y2-4x-5=0上,则双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
9
-
y2
a
=1
的右焦点为(
13
,0)
,则该双曲线的渐近线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
9
-
y2
b2
=1
的右焦点为(
13
,0)
,则该双曲线的渐近线方程为
y=±
2
3
x
y=±
2
3
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
9
-
y2
b2
=1 (b>0)
的渐近线方程为y=±
5
3
x,则此双曲线的焦点到渐近线的距离为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
9
-
y2
m
=1
的一个焦点在圆x2+y2-4x-5=0上,则双曲线的渐近线方程为
y=±
4
3
x
y=±
4
3
x

查看答案和解析>>

同步练习册答案