精英家教网 > 高中数学 > 题目详情
已知sinx=sinθ+cosθ,cosx=sinθcosθ,则cos52x=(  )
A.1B.0C.?-1D.不确定
把sinx=sinθ+cosθ,cosx=sinθcosθ分别两边平方得:
sin2x=(sinθ+cosθ)2=1+2sinθcosθ,cos2x=(sinθcosθ)2
则sin2x+cos2x=1=1+2sinθcosθ+(sinθcosθ)2,即sinθcosθ(sinθcosθ+2)=0,
因为sinθcosθ≠-2,所以得到sinθcosθ=0,即cosx=0,
则cos52x=(2cos2x-1)5=-1.
故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinx+sinα=
13
,求关于x的函数y=1+sinx+sin2α的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinx=sinα+cosα,cosx=sinαcosα,则cos2x=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinx=sinθ+cosθ,cosx=sinθcosθ,则cos52x=(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知sinx+sinα=
1
3
,求关于x的函数y=1+sinx+sin2α的最值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济南外国语学校高一(下)期中数学试卷(解析版) 题型:解答题

已知sinx+sinα=,求关于x的函数y=1+sinx+sin2α的最值.

查看答案和解析>>

同步练习册答案