精英家教网 > 高中数学 > 题目详情
13.已知0<x<1,函数f(x)=(1+x2)(2-x),
(1)求函数f(x)的最小值;
(2)若a、b、c为正,且满足a+b+c=1,求证$\frac{1}{1+{a}^{2}}$+$\frac{1}{1+{b}^{2}}$+$\frac{1}{1+{c}^{2}}$≤$\frac{27}{10}$.

分析 (1)f(x)=(1+x2)(2-x)=-x3+2x2-x+2,0<x<1,可得f′(x)=-3x2+4x-1=-(3x-1)(x-1),利用导数研究函数的单调性极值即可得出.
(2)由(1)可得:0<x<1,(1+x2)(2-x)≥$\frac{50}{27}$,$\frac{1}{1+{x}^{2}}$≤$\frac{27(2-x)}{50}$.利用a、b、c为正,且满足a+b+c=1,代入即可得出.

解答 (1)解:f(x)=(1+x2)(2-x)=-x3+2x2-x+2,0<x<1,
f′(x)=-3x2+4x-1=-(3x-1)(x-1),
当$0<x<\frac{1}{3}$时,f′(x)<0,此时函数f(x)单调递减;当$\frac{1}{3}<x<1$时,f′(x)>0,此时函数f(x)单调递增.
∴当x=$\frac{1}{3}$时,函数f(x)取得极小值即最小值,$f(\frac{1}{3})$=$(1+\frac{1}{9})$×$(2-\frac{1}{3})$=$\frac{50}{27}$.
(2)证明:由(1)可得:0<x<1,(1+x2)(2-x)≥$\frac{50}{27}$,∴$\frac{1}{1+{x}^{2}}$≤$\frac{27(2-x)}{50}$.
∵a、b、c为正,且满足a+b+c=1,
∴$\frac{1}{1+{a}^{2}}$+$\frac{1}{1+{b}^{2}}$+$\frac{1}{1+{c}^{2}}$≤$\frac{27[6-(a+b+c)]}{50}$=$\frac{27}{10}$.当且仅当a=b=c=$\frac{1}{3}$时取等号.
∴$\frac{1}{1+{a}^{2}}$+$\frac{1}{1+{b}^{2}}$+$\frac{1}{1+{c}^{2}}$≤$\frac{27}{10}$.

点评 本题考查了利用导数研究函数的单调性极值并且证明不等式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知两点A(-3,0)、B(3,2)在圆C上,直线x+y-3=0过圆心C.求
(1)线段AB的垂直平分线方程.
(2)圆心C的坐标.
(3)圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数y=3x+(b-1)的图象不经过第二象限,则b的取值范围是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.己知数列{cn}的前n项和为Tn,若数列{cn}满足各项均为正项,并且以(cn,Tn)(n∈N*)为坐标的点都在曲线ay=$\frac{a}{2}$x2+$\frac{a}{2}$x+b,(a为非0常数)上运动,则称数列{cn}为“抛物数列”,己知数列{bn}为“抛物数列”,则(  )
A.{bn}一定为等比数列B.{bn}一定为等差数列
C.从第二项起{bn}一定为等比数列D.从第二项起{bn}一定为等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合M={x|-1≤x<5},N={x|x≤a},试分别确定实数a所在的区间,使得:
(1)M∩N=∅;            
(2)M∪N=N.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知三个集合A、B、C,则“A⊆B,B⊆C,C⊆A”是“A=B=C”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.${∫}_{0}^{2}$$\sqrt{1-{x}^{2}}$dx=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,AB是⊙O的直径,C、F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB的延长线于点D.连接CF交AB于点E.
(1)求证:DE2=DB•DA;    
(2)若DB=2,DF=4,试求CE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知c>0,且c≠1,设p:函数y=cx在R上单调递减;q:函数f(x)=x2-2cx+1在(1,+∞)上为增函数,若“p且q”为假,“p或q”为真,求实数c的取值范围.

查看答案和解析>>

同步练习册答案