精英家教网 > 高中数学 > 题目详情

使一块矩形木板ABCD的一边AB靠紧桌面α,并绕AB转动.AB的对边CD在各个位置时,是不是都和桌面α平行?为什么?

答案:
解析:

不是都和桌面α平行.当对边CD也紧靠桌面α时,CDα;当CD在其他位置时,因为ABα,CDα,而CD∥AB,所以CD∥α.


提示:

解答本题要注意直线和平面平行的判定定理的条件.一条直线与平面内的一条直线平行并不能说明这条直线就和这个平面平行,只有在直线在平面外时这个结论才成立,直线也有可能在平面内.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网某居民小区内建有一块矩形草坪ABCD,AB=50米,BC=25
3
米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设三条小路OE、EF和OF,考虑到小区整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且∠EOF=90°,如图所示.
(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条路每米铺设费用均为400元,试问如何设计才能使铺路的总费用最低?并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,某学校的教学楼前有一块矩形空地ABCD,其长为32米,宽为18米,现要在此空地上种植一块矩形草坪,三边留有人行道,人行道宽度为a米与b米(a与b均不小于2米),且要求“转角处”(图中矩形AEFG)的面积为8平方米.
(Ⅰ)试用a表示草坪的面积S(a),并指出a的取值范围;
(Ⅱ)如何设计人行道的宽度a、b,才能使草坪的面积最大?并求出草坪的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,某学校的教学楼前有一块矩形空地ABCD,其长为32米,宽为18米,现要在此空地上种植一块矩形草坪,三边留有人行道,人行道宽度为a米与b米均不小于2米,且要求“转角处(图中矩形AEFG)”的面积为8平方米
(1)试用a表示草坪的面积S(a),并指出a的取值范围
(2)如何设计人行道的宽度a、b,才能使草坪的面积最大?并求出草坪的最大面积.
(3)直接写出(不需要给出演算步骤)草坪面积的最小值及此时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闵行区二模)如图,在半径为20cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上.
(1)请你在下列两个小题中选择一题作答即可:
①设∠BOC=θ,矩形ABCD的面积为S=g(θ),求g(θ)的表达式,并写出θ的范围.
②设BC=x(cm),矩形ABCD的面积为S=f(x),求f(x)的表达式,并写出x的范围.
(2)怎样截取才能使截得的矩形ABCD的面积最大?并求最大面积.

查看答案和解析>>

同步练习册答案