精英家教网 > 高中数学 > 题目详情

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为

且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为.

(1)求的值,

 (2)设在甲、乙、丙三人中破译出密码的总人数为X,求X的分布列和数学期望E(X).

 

【答案】

(1);(2)分布列详见解析,.

【解析】

试题分析:本题主要考查概率的计算公式、事件的相互独立性、离散型随机变量的分布列与数学期望等基础知识,考查运用概率知识解决简单实际问题的能力,考查基本运算能力.第一问,是事件的相互独立性,通过独立事件的概率公式列出已知条件中的表达式,解方程解出;第二问,是求分布列和期望,同样利用独立事件的概率公式,求出每一种情况下的概率,画出分布列,利用期望的计算公式计算期望.

试题解析:记“甲、乙、丙三人各自破译出密码”分别为事件,依题意有,且相互独立.         2分

(1)设“三人中只有甲破译出密码”为事件

则有.           5分

所以,得.          6分

(2)的所有可能取值为0,1,2,3.

所以

.         10分

的分布列为

所以.         12分

考点:1.独立事件的概率;2.分布列;3.期望.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为
1
2
1
3
,p
.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为
1
4

(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;
(Ⅱ)求p的值;
(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为
1
3
1
4
,p
,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为
1
6

(1)求p的值,
(2)设在甲、乙、丙三人中破译出密码的总人数为X,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为
1
2
1
3
、p,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为
1
4

(1)求p的值.
(2)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源:2013届陕西省西安市高二下学期期中理科数学试卷(解析版) 题型:解答题

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为.

(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;

(Ⅱ)求的值;

(Ⅲ)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.

 

查看答案和解析>>

同步练习册答案