精英家教网 > 高中数学 > 题目详情

(Ⅰ)已知函数P(x1,f(x1)),Q(x2,f(x2))是f(x)图象上的任意两点,且x1<x2

①求直线PQ的斜率kPQ的取值范围及f(x)图象上任一点切线的斜率k的取值范围;

②由①你得到的结论是:若函数f(x)在[a,b]上有导函数(x),且f(a)、f(b)存在,则在(a,b)内至少存在一点ξ,使得(ξ)=________成立(用a,b,f(a),f(b)表示,只写出结论,不必证明)

(Ⅱ)设函数g(x)的导函数为(x),且(x)为单调递减函数,g(0)=0.试运用你在②中得到的结论证明:当x∈(0,1)时,g(1)x<g(x).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
1
2
ax2+bx

(1)当a=b=
1
2
时,求函数h(x)=f(x)-g(x)的单调区间;
(2)若b=2且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(3)当a≠0时,设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M,N,则是否存在点R,使C1在点M处的切线与C2在点N处的切线平行?如果存在,请求出R的横坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
x+b
,且f(1)=1,f(-2)=4.
(1)求a、b的值;
(2)已知定点A(1,0),设点P(x,y)是函数y=f(x)(x<-1)图象上的任意一点,求|AP|的最小值,并求此时点P的坐标;
(3)当x∈[1,2]时,不等式f(x)≤
2m
(x+1)|x-m|
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
x+2
5-x
的定义域为集合Q,集合P={x|a+1≤x≤2a+1}.
(1)若a=3,求(?RP)∩Q;
(2)若P⊆Q,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinπx+cosπx
,x∈R.
(1)求函数f(x)的最大值和最小值;
(2)设函数f(x)在[-1,1]上的图象与x轴的交点从左到右分别为M、N,图象的最高点为P,求
PM
PN
的夹角的余弦.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为I的函数y=f(x),如果存在区间[m,n]⊆I,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n],f(x)值域也是[m,n],则称[m,n]是函数y=f(x)的“好区间”.
(1)设g(x)=loga(ax-2a)+loga(ax-3a)(其中a>0且a≠1),判断g(x)是否存在“好区间”,并说明理由;
(2)已知函数P(x)=
(t2+t)x-1t2x
(t∈R,t≠0)
有“好区间”[m,n],当t变化时,求n-m的最大值.

查看答案和解析>>

同步练习册答案