精英家教网 > 高中数学 > 题目详情

(本小题满分13分)

如图,在三棱柱中,侧面均为正方形,∠,点是棱的中点.

(Ⅰ)求证:⊥平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的余弦值.

 

 

 

 

 

 

 

 

 

 

 

【答案】

 

(1) 略

(2)略

(3)

【解析】(Ⅰ)证明:因为侧面均为正方形,

所以,

所以平面,三棱柱是直三棱柱.    ………………1分

因为平面,所以,          ………………2分

又因为中点,

所以.              ……………3分

因为,

所以平面.       ……………4分

(Ⅱ)证明:连结,交于点,连结

因为为正方形,所以中点,

中点,所以中位线,

所以,            ………………6分

因为平面平面

所以平面.       ………………8分

 (Ⅲ)解: 因为侧面均为正方形,

所以两两互相垂直,如图所示建立直角坐标系.

,则.

,                             ………………9分

设平面的法向量为,则有

,得.                                  ………………10分

又因为平面,所以平面的法向量为,………11分

,                          ………………12分

因为二面角是钝角,

所以,二面角的余弦值为.                  ………………13分

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题

(本小题满分13分)已知函数.

(1)求函数的最小正周期和最大值;

(2)在给出的直角坐标系中,画出函数在区间上的图象.

(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知定义域为的函数是奇函数.

(1)求的值;(2)判断函数的单调性;

(3)若对任意的,不等式恒成立,求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题

(本小题满分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题

 

(本小题满分13分)如图,正三棱柱的所有棱长都为2,的中点。

(Ⅰ)求证:∥平面

(Ⅱ)求异面直线所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[来源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题

(本小题满分13分)

已知为锐角,且,函数,数列{}的首项.

(1) 求函数的表达式;

(2)在中,若A=2,,BC=2,求的面积

(3) 求数列的前项和

 

 

查看答案和解析>>

同步练习册答案