精英家教网 > 高中数学 > 题目详情

设动点P到两定点F1(-l,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2 sin2θ=λ.

(1)证明:动点P的轨迹C为双曲线,并求出C的方程;

(2)如图,过点F2的直线与双曲线C的右支交于A、B两点.问:是否存在λ,使△F1AB是以点B为直角定点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.

解:(1)在中,

(小于的常数)

故动点的轨迹是以为焦点,实轴长的双曲线.

方程为

(2)方法一:在中,设

假设为等腰直角三角形,则

由②与③得

由⑤得

故存在满足题设条件.

方法二:(1)设为等腰直角三角形,依题设可得

所以

.①

,可设

.②

由①②得.③

根据双曲线定义可得,

平方得:.④

由③④消去可解得,

故存在满足题设条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下5个命题:
①曲线x2-(y-1)2=1按
a
=(1,-2)
平移可得曲线(x+1)2-(y-3)2=1;
②设A、B为两个定点,n为常数,|
PA
|-|
PB
|=n
,则动点P的轨迹为双曲线;
③若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,延长F1P到点M,使|F2P|=|PM|,则点M的轨迹是圆;
④A、B是平面内两定点,平面内一动点P满足向量
AB
AP
夹角为锐角θ,且满足 |
PB
| |
AB
| +
PA
AB
=0
,则点P的轨迹是圆(除去与直线AB的交点);
⑤已知正四面体A-BCD,动点P在△ABC内,且点P到平面BCD的距离与点P到点A的距离相等,则动点P的轨迹为椭圆的一部分.
其中所有真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源:2007年普通高等学校招生全国统一考试、文科数学(江西卷) 题型:038

设动点P到两定点F1(-l,0)和F2(1,0)的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ.

(1)证明:动点P的轨迹C为双曲线,并求出C的方程;

(2)如图,过点F2的直线与双曲线C的右支交于A、B两点.问:是否存在λ,使△F1AB是以点B为直角定点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:江西省高考真题 题型:解答题

设动点P到两定点F1(-1,0 )和F2(1,0 ) 的距离分别为d1和d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2sin2θ=λ,
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)如图过点F2的直线与双曲线C的右支交于A、B两点,问:是否存在λ,使△F1AB是以点B为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

22. 设动点P到两定点F1(-l,0)和F2(1,0)的距离分别为d1d2,∠F1PF2=2θ,且存在常数λ(0<λ<1),使得d1d2 sin2θ=λ.

   (1)证明:动点P的轨迹C为双曲线,并求出C的方程;

   (2)如图,过点F2的直线与双曲线C的右支交于AB两点.问:是否存在λ,使△F1AB是以点B为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案