精英家教网 > 高中数学 > 题目详情
若以连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=16内的概率是
 
分析:本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m、n作为点P的坐标,共有6×6种结果,而满足条件的事件是点P落在圆x2+y2=16内,列举出落在圆内的情况共有8种结果,求比值得到结果.
解答:解:由题意知,本题是一个古典概型,
试验发生包含的事件是连续掷两次骰子分别得到的点数m、n作为点P的坐标,共有6×6=36种结果,
而满足条件的事件是点P落在圆x2+y2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3)
(2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果,
根据古典概型概率公式得到P=
8
36
=
2
9

故答案为:
2
9
点评:本题是一个古典概型问题,这种问题在高考时可以一道解答题,古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若以连续掷两次骰子分别得到的点数m,n作为点P的横、纵坐标,则点P在直线x+y=5上的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若以连续掷两次骰子分别得到的点数m、n作为点P的横、纵坐标,则点P在直线x+y=5下方的概率为.
A、
1
6
B、
1
4
C、
1
12
D、
1
9

查看答案和解析>>

科目:高中数学 来源: 题型:

若以连续掷两次骰子分别得到的点数m、n作为点P的坐标(m,n),则点P在圆x2+y2=25外的概率是
 

查看答案和解析>>

科目:高中数学 来源:2012高三数学一轮复习单元练习题 概率与统计(3) 题型:022

若以连续掷两次骰子分别得点数mn作为点P的横、纵坐标,则点P落在圆x2y2=16内的概率是________

查看答案和解析>>

同步练习册答案