精英家教网 > 高中数学 > 题目详情
设F1、F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,P是C上的一个动点,且|PF1|+|PF2|=4,C的离心率为
1
2

(Ⅰ)求C方程;
(Ⅱ)是否存在过点F2且斜率存在的直线l与椭圆交于不同的两点C、D,使得|F1C|=|F1D|.若存在,求直线l的方程;若不存在,请说明理由.
分析:(Ⅰ)由已知可得椭圆的长轴长,结合离心率求出c,则b可求,椭圆的方程可求;
(Ⅱ)假设存在,设出直线方程,和椭圆方程联立利用跟与系数求出两个交点CD的中点,再由|F1C|=|F1D|可知椭圆左焦点在CD的中垂线上,代入坐标后得到矛盾式子,所以假设不成立.
解答:解:(Ⅰ)因为|PF1|+|PF2|=4,所以a=2,
因为离心率为
1
2
,所以c=1,所以b=
3

所以椭圆方程为
x2
4
+
y2
3
=1

(Ⅱ)假设存在满足条件的直线l,易知点F2在椭圆的内部,
直线l与椭圆一定有两个交点,设直线l斜率为k,点C(x1,y1),点D(x2,y2
直线l的方程为y=k(x-1),由方程组
x2
4
+
y2
3
=1
y=k(x-1)

得(4k2+3)x2-8k2x+4k2-12=0.
x1+x2=
8k2
4k2+3
x0=
x1+x2
2
=
4k2
4k2+3

y0=k(x0-1)=k(
4k2
4k2+3
-1)=
-3k
4k2+3

又|F1D|=|F1C|,所以F1在CD的垂直平分线上,又CD的垂直平分线上方程为y+
3k
4k2+3
=-
1
k
(x-
4k2
4k2+3
)

所以
3k
4k2+3
=-
1
k
(-1-
4k2
4k2+3
)

所以5k2+3=0,不成立,所以不存在直线l,使得|F1D|=|F1C|.
综上所述,不存在直线l,使得|F1D|=|F1C|.
点评:本题考查了椭圆的定义及方程的求法,考查了椭圆的简单几何性质,是直线与圆锥曲线的综合题,解答的关键是把|F1C|=|F1D|转化为点F1过CD的中垂线,考查了学生的计算能力,是有一定难度题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网设F1,F2分别是椭圆C:
x2
6m2
+
y2
2m2
=1
(m>0)的左,右焦点.
(1)当P∈C,且
PF1
PF
2
=0
,|PF1|•|PF2|=8时,求椭圆C的左,右焦点F1、F2
(2)F1、F2是(1)中的椭圆的左,右焦点,已知⊙F2的半径是1,过动点Q的作⊙F2切线QM,使得|QF1|=
2
|QM|
(M是切点),如图.求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,且椭圆上一点P(1,
3
2
)
到F1,F2两点距离之和等于4.
(Ⅰ)求此椭圆方程;
(Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N,且线段MN的垂直平分线过定点G(
1
8
,0)
,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设F1、F2分别是椭圆C:
x2
6m2
+
y2
2m2
=1
(m>0)的左、右焦点.
(I)当p∈C,且
pF1
pF
2
=0
|
pF1
|•|
pF
2
|=4
时,求椭圆C的左、右焦点F1、F2的坐标.
(II)F1、F2是(I)中的椭圆的左、右焦点,已知F2的半径是1,过动点Q作的切线QM(M为切点),使得|QF1|=
2
|QM|
,求动点Q的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别是椭圆C:
x2
a2
+
x2
b2
=1(a>b>0)的焦点,若椭圆C上存在点P,使线段PF1的垂直平分线过点F2,则椭圆离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•肇庆二模)设F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点.
(1)设椭圆C上的点(
2
2
3
2
)
到F1,F2两点距离之和等于2
2
,写出椭圆C的方程;
(2)设过(1)中所得椭圆上的焦点F2且斜率为1的直线与其相交于A,B,求△ABF1的面积;
(3)设点P是椭圆C 上的任意一点,过原点的直线l与椭圆相交于M,N两点,当直线PM,PN的斜率都存在,并记为kPN,kPN试探究kPN•kPN的值是否与点P及直线l有关,并证明你的结论.

查看答案和解析>>

同步练习册答案