精英家教网 > 高中数学 > 题目详情
设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.
(1)求数列{an}的公比;
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
【答案】分析:(1)设{an}的公比为q(q≠0,q≠1),利用a5,a3,a4成等差数列结合通项公式,可得,由此即可求得数列{an}的公比;
(2)对任意k∈N+,Sk+2+Sk+1-2Sk=(Sk+2-Sk)+(Sk+1-Sk)=ak+2+ak+1+ak+1=2ak+1+ak+1×(-2)=0,从而得证.
解答:(1)解:设{an}的公比为q(q≠0,q≠1)
∵a5,a3,a4成等差数列,∴2a3=a5+a4

∵a1≠0,q≠0,
∴q2+q-2=0,解得q=1或q=-2
∵q≠1,
∴q=-2
(2)证明:对任意k∈N+,Sk+2+Sk+1-2Sk=(Sk+2-Sk)+(Sk+1-Sk)=ak+2+ak+1+ak+1=2ak+1+ak+1×(-2)=0
∴对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.
点评:本题考查等差数列与等比数列的综合,熟练运用等差数列的性质,等比数列的通项是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•陕西)设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.
(1)求数列{an}的公比;
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.

(1)求数列{an}的公比.

(2)证明:对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列。
(1)求数列{an}的公比;
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列。

查看答案和解析>>

科目:高中数学 来源:2012年陕西省高考数学试卷(理科)(解析版) 题型:解答题

设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.
(1)求数列{an}的公比;
(2)证明:对任意k∈N+,Sk+2,Sk,Sk+1成等差数列.

查看答案和解析>>

同步练习册答案