精英家教网 > 高中数学 > 题目详情

设椭圆的焦点为F1、F2,以F1F2为直径的圆与椭圆的一个交点为P,若|F1F2|=2|PF2|,则椭圆的离心率为_________

 

【答案】

【解析】

试题分析:由题意可知,因为|F1F2|=2|PF2|=2c,|PF2|=c,所以.

考点:椭圆的定义,以及圆的性质,椭圆的几何性质.

点评:知道直径所对的圆周角为直角,从而可利用|F1F2|=2|PF2|=2c,把此三角形的三条边都用c表示出来,再利用椭圆的定义可求出e.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆的焦点为F1、F2,以F1F2为直径的圆与椭圆的一个交点为P,若|F1F2|=2|PF2|,则椭圆的离心率为
3
-1
3
-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆的焦点为F1、F2,以F1F2为直径的圆与椭圆的一个交点为P,若|F1F2|=2|PF2|,则椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省广州六中高三(上)第三次月考数学试卷(文科)(解析版) 题型:填空题

设椭圆的焦点为F1、F2,以F1F2为直径的圆与椭圆的一个交点为P,若|F1F2|=2|PF2|,则椭圆的离心率为   

查看答案和解析>>

科目:高中数学 来源:2008-2009学年北京市西城区高二(上)期末数学试卷(文科)(解析版) 题型:选择题

设椭圆的焦点为F1、F2,P为椭圆上一点,且|PF1|=3|PF2|,则|PF1|的值为( )
A.3
B.1
C.
D.

查看答案和解析>>

同步练习册答案