精英家教网 > 高中数学 > 题目详情
与函数f (x)有关的奇偶性,有下列三个命题:
①若f (x)为奇函数,则f (0)=0;
②若f (x)的定义域内含有非负实数,则f(|x|)必为偶函数;
③若f (-x)有意义,则f (x)必能写成一个奇函数与一个偶函数之和.
其中,真命题为
 
(写出你认为正确的所有命题的代号)
分析:根据函数奇偶性的定义分别进行判断即可.
解答:解:①函数为奇函数,则定义域关于原点对称,但不一定有f (0)=0,比如函数f(x)=
1
x
满足是奇函数,但f(0)无意义,∴①错误.
②若函数为偶函数,则定义域关于原点对称,若f (x)的定义域内含有非负实数,则定义域不一定关于原点对称,∴②不一定正确.
③若f(x)可分解为一个奇函数与一个偶函数的和,不妨设f(x)=g(x)+h(x),其中g(x)为偶函数,h(x)为奇函数,
则f(-x)=g(-x)+h(-x)=g(x)-h(x),则联立两式得,g(x)=
f(x)+f(-x)
2
,h(x)=
f(x)-f(-x)
2
,此种分解方法只有一种,∴③正确.
故正确的是③.
故答案为:③
点评:本题主要考查函数的奇偶性的定义和性质的应用,利用函数奇偶性的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西北海市合浦七中高一(上)期中数学试卷(解析版) 题型:解答题

对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西北海市合浦七中高一(上)期中数学试卷(解析版) 题型:解答题

对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

同步练习册答案