精英家教网 > 高中数学 > 题目详情

(理科)设

(1)求f(x)的反函数f-1(x);

(2)讨论f-1(x)在(1,+∞)上的单调性,并加以证明;

(3)令g(x)=1+logax,当时,f-1(x)在[m,n]上的值域是[g(n),g(m)],求a的取值范围.

答案:
解析:

  解:(1) 3分

  (2)设,∵

  ∴时,,∴上是减函数:

  时,,∴上是增函数. 7分

  (3)当时,∵上是减函数

  ∴,由

  即

  可知方程的两个根均大于,即 10分

  当时,∵上是增函数

  ∴(舍去).

  综上,得. 12分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某中学组建了A、B、C、D、E五个不同的社团组织,为培养学生的兴趣爱好,要求每个学生必须参加且只能参加一个社团,假定某班级的甲、乙、丙三名学生对这五个社团的选择是等可能的.
(1)求甲、乙、丙三名学生中至少有两人参加同一社团的概率;
(2)(文科)求甲、乙、丙三人中恰有两人参加A社团的概率;
(3)(理科)设随机变量ξ为甲、乙、丙这三个学生参加A社团的人数,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

多向飞碟是奥运会的竞赛项目,它是由抛靶机把碟靶(射击的目标)在一定范围内从不同的方向飞出,每抛出一个碟靶,就允许运动员射击两次,直到击中为止.一运动员在进行训练时,每一次射击命中碟靶的概率P与运动员离碟靶的距离S(米)成反比,现有一碟靶抛出的距离S(米)与飞行时间t(秒)满足S=15(t+1),(0≤t≤4).假设运动员在碟靶飞出后0.5秒进行第一次射击,且命中的概率为0.8,如果他发现没有命中,则通过迅速调整,在第一次射击后经过0.5秒进行第二次射击.
理科:(1)设该运动员命中碟靶的次数为ξ,求ξ的分布列;(2)求Eξ和Dξ.
文科:求该运动员命中碟靶的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-ax+a,(a≠0x∈R),有且仅有唯一的实数x值满足f(x)≤0的实数x值满足f(x)≤0.
(1)在数列{an}中,满足Sn=f(n)-4,求{an}的通项;
(2)在数列{an}中依次取出第1项、第2项、第4项…第2n-1项…组成新数列{bn},求新数列{bn}的前n项和Tn
(3)(理科)设数列{cn}满足cn+cn+1=2n+3,c1=1,数列{cn}的前n项和记作Hn,试比较Hn与题(1)中Sn的大小.
(4)(文科)设cn=
nanan+1
,求数列{cn}
的最大和最小值.

查看答案和解析>>

科目:高中数学 来源:四川省成都市石室中学2006-2007学年度高三年级第二次月考 数学试题 题型:044

(1)

f(x)的反函数f-1(x)

(2)

讨论f-1(x)在(1,+∞)上的单调性,并加以证明

(3)

(只理科做)令g(x)=1+logax,当[m,n](1,+∞)(m<n)时,f-1(x)在[m,n]上的值域是[g(n),g(m)],求a的取值范围.

查看答案和解析>>

同步练习册答案