ÒÑ֪˫ÇúÏßGµÄÖÐÐÄÔÚÔ­µã£¬ËüµÄ½¥½üÏßÓëÔ²x2+y2-10x+20=0ÏàÇУ®¹ýµãP£¨-4£¬0£©×÷бÂÊΪ
14
µÄÖ±Ïßl£¬Ê¹µÃlºÍG½»ÓÚA£¬BÁ½µã£¬ºÍyÖá½»ÓÚµãC£¬²¢ÇÒµãPÔÚÏ߶ÎABÉÏ£¬ÓÖÂú×ã|PA|•|PB|=|PC|2£®
£¨1£©ÇóË«ÇúÏßGµÄ½¥½üÏߵķ½³Ì£»
£¨2£©ÇóË«ÇúÏßGµÄ·½³Ì£»
£¨3£©ÍÖÔ²SµÄÖÐÐÄÔÚÔ­µã£¬ËüµÄ¶ÌÖáÊÇGµÄʵÖá¡¢Èç¹ûSÖд¹Ö±ÓÚlµÄƽÐÐÏÒµÄÖеãµÄ¹ì¼£Ç¡ºÃÊÇGµÄ½¥½üÏß½ØÔÚSÄڵIJ¿·ÖAB£¬ÈôP£¨x£¬y£©£¨y£¾0£©ÎªÍÖÔ²ÉÏÒ»µã£¬Ç󵱡÷ABPµÄÃæ»ý×î´óʱµãPµÄ×ø±ê£®
·ÖÎö£º£¨1£©ÉèË«ÇúÏßGµÄ½¥½üÏߵķ½³ÌΪy=kx£¬ÔòÓɽ¥½üÏßÓëÔ²x2+y2-10x+20=0ÏàÇпɵÃ
|5k|
k2+1
=
5
£¬ÓÉ´ËÄÜÇó³öË«ÇúÏßGµÄ½¥½üÏߵķ½³Ì£®
£¨2£©ÉèË«ÇúÏßGµÄ·½³ÌΪx2-4y2=m£¬°ÑÖ±ÏßlµÄ·½³Ìy=
1
4
£¨x+4£©´úÈëË«ÇúÏß·½³Ì£¬µÃ3x2-8x-16-4m=0£¬ÔòxA+xB=
8
3
£¬xAxB=-
16+4m
3
£®ÓÉ|PA|•|PB|=|PC|2£¬P¡¢A¡¢B¡¢C¹²ÏßÇÒPÔÚÏ߶ÎABÉÏ£¬Öª4£¨xA+xB£©+xAxB+32=0£®ÓÉ´ËÄÜÇó³öË«ÇúÏߵķ½³Ì£®
£¨3£©ÉèÍÖÔ²SµÄ·½³ÌΪ
y2
28
+
y2
a2
=1£¨a£¾2
7
£©£¬Éè´¹Ö±ÓÚlµÄƽÐÐÏÒµÄÁ½¶Ëµã·Ö±ðΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬MNµÄÖеãΪP£¨x0£¬y0£©£¬Ôò
x12
28
+
y12
a2
=1£¬
x22
28
+
y22
a2
=1£¬Á½Ê½×÷²îµÃ
(x1-x2)(x1+x2)
28
+
(y1-y2)(y1+y2)
a2
=0£®ÓÉ´ËÈëÊÖÄܹ»Çó³öPµãµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©ÉèË«ÇúÏßGµÄ½¥½üÏߵķ½³ÌΪy=kx£¬
ÔòÓɽ¥½üÏßÓëÔ²x2+y2-10x+20=0ÏàÇпɵÃ
|5k|
k2+1
=
5
£¬
ËùÒÔk=¡À
1
2
£¬¼´Ë«ÇúÏßGµÄ½¥½üÏߵķ½³ÌΪy=¡À
1
2
x£®  £¨3·Ö£©
£¨2£©ÓÉ£¨1£©¿ÉÉèË«ÇúÏßGµÄ·½³ÌΪx2-4y2=m£¬
°ÑÖ±ÏßlµÄ·½³Ìy=
1
4
£¨x+4£©´úÈëË«ÇúÏß·½³Ì£¬
ÕûÀíµÃ3x2-8x-16-4m=0£¬
ÔòxA+xB=
8
3
£¬xAxB=-
16+4m
3
£®£¨*£©
¡ß|PA|•|PB|=|PC|2£¬P¡¢A¡¢B¡¢C¹²ÏßÇÒPÔÚÏ߶ÎABÉÏ£¬
¡à£¨xP-xA£©£¨xB-xP£©=£¨xP-xC£©2£¬¼´£¨xB+4£©£¨-4-xA£©=16£¬
ÕûÀíµÃ4£¨xA+xB£©+xAxB+32=0£®½«£¨*£©´úÈëÉÏʽµÃm=28£¬
¡àË«ÇúÏߵķ½³ÌΪ
x2
28
-
y2
7
=1£®               £¨7·Ö£©
£¨3£©ÓÉÌâ¿ÉÉèÍÖÔ²SµÄ·½³ÌΪ
y2
28
+
y2
a2
=1£¨a£¾2
7
£©£¬
Éè´¹Ö±ÓÚlµÄƽÐÐÏÒµÄÁ½¶Ëµã·Ö±ðΪM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬MNµÄÖеãΪP£¨x0£¬y0£©£¬
Ôò
x12
28
+
y12
a2
=1£¬
x22
28
+
y22
a2
=1£¬
Á½Ê½×÷²îµÃ
(x1-x2)(x1+x2)
28
+
(y1-y2)(y1+y2)
a2
=0£¬
ÓÉÓÚ
y1-y2
x1-x2
=-4£¬x1+x2=2x0£¬y1+y2=2y0£¬ËùÒÔ
x0
28
-
4y0
a2
=0£¬
ËùÒÔ£¬´¹Ö±ÓÚlµÄƽÐÐÏÒÖеãµÄ¹ì¼£ÎªÖ±Ïß
x
28
-
4y
a2
=0½ØÔÚÍÖÔ²SÄڵIJ¿·Ö£®
ÓÖÓÉÒÑÖª£¬Õâ¸ö¹ì¼£Ç¡ºÃÊÇGµÄ½¥½üÏß½ØÔÚSÄڵIJ¿·Ö£¬ËùÒÔ
a2
112
=
1
2
£¬¼´a2=56£¬
¹ÊÍÖÔ²SµÄ·½³ÌΪ
x2
28
+
y2
56
=1£¨12·Ö£©
ÓÉÌâÒâÖªÂú×ãÌõ¼þµÄPµã±ØΪƽÐÐÓÚABÇÒÓëÍÖÔ²ÏàÇеÄÖ±ÏßmÔÚÍÖÔ²ÉϵÄÇе㣬
Ò×µÃÇÐÏßmµÄ·½³ÌΪy=
1
2
x+3
7
£¬½âµÃÇеã×ø±êx=
2
7
3
£¬y=
10
7
3
£¬
ÔòPµãµÄ×ø±êΪ£¨
2
7
3
£¬
10
7
3
£©£®£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éË«ÇúÏß½¥½üÏß·½³ÌµÄÇ󷨣¬¿¼²éË«ÇúÏß·½³ÌµÄÇ󷨣¬²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£¬¶ÔÊýѧ˼άÄÜÁ¦ÒªÇó½Ï¸ß£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪˫ÇúÏßGµÄÖÐÐÄÔÚÔ­µã£¬ËüµÄ½¥½üÏßÓëÔ²x2+y2-10x+20=0ÏàÇУ®¹ýµãP£¨-4£¬0£©×÷бÂÊΪ
14
µÄÖ±Ïßl£¬Ê¹µÃlºÍG½»ÓÚA£¬BÁ½µã£¬ºÍyÖá½»ÓÚµãC£¬²¢ÇÒµãPÔÚÏ߶ÎABÉÏ£¬ÓÖÂú×ã|PA|•|PB|=|PC|2£®
£¨1£©ÇóË«ÇúÏßGµÄ½¥½üÏߵķ½³Ì£»
£¨2£©ÇóË«ÇúÏßGµÄ·½³Ì£»
£¨3£©ÍÖÔ²SµÄÖÐÐÄÔÚÔ­µã£¬ËüµÄ¶ÌÖáÊÇGµÄʵÖᣮÈç¹ûSÖд¹Ö±ÓÚlµÄƽÐÐÏÒµÄÖеãµÄ¹ì¼£Ç¡ºÃÊÇGµÄ½¥½üÏß½ØÔÚSÄڵIJ¿·Ö£¬ÇóÍÖÔ²SµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑ֪˫ÇúÏßGµÄÖÐÐÄÔÚÔ­µã£¬ËüµÄ½¥½üÏß·½³ÌÊÇy=¡À
1
2
x
£®¹ýµãP£¨-4£¬0£©×÷бÂÊΪ
1
4
µÄÖ±Ïßl£¬Ê¹µÃlºÍG½»ÓÚA£¬BÁ½µã£¬ºÍyÖá½»ÓÚµãC£¬µãPÔÚÏ߶ÎABÉÏ£¬²¢ÇÒÂú×ã|PA|•|PB|=|PC|2£¬ÇóË«ÇúÏßGµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013½ìɽ¶«Ê¡¼ÃÄþÊи߶þÉÏѧÆÚÆÚÄ©¿¼ÊÔÀí¿ÆÊýѧ ÌâÐÍ£º½â´ðÌâ

(±¾Ð¡ÌâÂú·Ö12·Ö)

ÒÑ֪˫ÇúÏßGµÄÖÐÐÄÔÚÔ­µã,ËüµÄ½¥½üÏßÓëÔ²x2£«y2£­10x£«20£½0ÏàÇÐ.¹ýµãP(£­4,0)×÷бÂÊΪµÄÖ±Ïß,ʹµÃºÍG½»ÓÚA,BÁ½µã,ºÍyÖá½»ÓÚµãC,²¢ÇÒµãPÔÚÏ߶ÎABÉÏ,ÓÖÂú×ã|PA|¡¤|PB|£½|PC|2.   

(1)ÇóË«ÇúÏßGµÄ½¥½üÏߵķ½³Ì£»  

(2)ÇóË«ÇúÏßGµÄ·½³Ì£»

(3)ÍÖÔ²SµÄÖÐÐÄÔÚÔ­µã,ËüµÄ¶ÌÖáÊÇGµÄʵÖá.Èç¹ûSÖд¹Ö±ÓÚµÄƽÐÐÏÒµÄÖеãµÄ¹ì¼£Ç¡ºÃÊÇGµÄ½¥½üÏß½ØÔÚSÄڵIJ¿·ÖAB,ÈôP£¨x,y£©£¨y>0£©ÎªÍÖÔ²ÉÏÒ»µã,Çóµ±µÄÃæ»ý×î´óʱµãPµÄ×ø±ê.

 

 

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2013½ì¼ªÁÖÊ¡¸ß¶þÉÏѧÆÚÖÊÁ¿¼ì²âÀí¿ÆÊýѧ ÌâÐÍ£º½â´ðÌâ

.ÒÑ֪˫ÇúÏßGµÄÖÐÐÄÔÚÔ­µã,ËüµÄ½¥½üÏßÓëÔ²x2£«y2£­10x£«20£½0ÏàÇÐ.¹ýµãP(£­4,0)×÷бÂÊΪµÄÖ±Ïß,ʹµÃºÍG½»ÓÚA,BÁ½µã,ºÍyÖá½»ÓÚµãC,²¢ÇÒµãPÔÚÏ߶ÎABÉÏ,ÓÖÂú×ã|PA|¡¤|PB|£½|PC|2.   

(1)ÇóË«ÇúÏßGµÄ½¥½üÏߵķ½³Ì£»  

(2)ÇóË«ÇúÏßGµÄ·½³Ì£»

(3)ÍÖÔ²SµÄÖÐÐÄÔÚÔ­µã,ËüµÄ¶ÌÖáÊÇGµÄʵÖá.Èç¹ûSÖд¹Ö±ÓÚµÄƽÐÐÏÒµÄÖеãµÄ¹ì¼£Ç¡ºÃÊÇGµÄ½¥½üÏß½ØÔÚSÄڵIJ¿·ÖAB,ÈôP£¨x,y£©£¨y>0£©ÎªÍÖÔ²ÉÏÒ»µã,Çóµ±µÄÃæ»ý×î´óʱµãPµÄ×ø±ê.

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸