(12分)圆、椭圆、双曲线都有对称中心,统称为有心圆锥曲线,它们统一的标准方程为
.圆的很多优美性质可以类比推广到有心圆锥曲线中,如圆的“垂径定理”的逆定理:圆的平分弦(不是直径)的直径垂直于弦. 类比推广到有心圆锥曲线:已知直线
与曲线
:
交于
两点,
的中点为
,若直线
和
(
为坐标原点)的斜率都存在,则
.这个性质称为有心圆锥曲线的“垂径定理”.
(Ⅰ)证明有心圆锥曲线的“垂径定理”;
(Ⅱ)利用有心圆锥曲线的“垂径定理”解答下列问题:
① 过点
作直线
与椭圆
交于
两点,求
的中点
的轨迹
的方程;
② 过点![]()
作直线
与有心圆锥曲线
交于
两点,是否存在这样的直线
使点
为线段
的中点?若存在,求直线
的方程;若不存在,说明理由.
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
| b2 |
| a2 |
| x2 |
| a2 |
| y2 |
| b2 |
| b2 |
| a2 |
查看答案和解析>>
科目:高中数学 来源:不详 题型:填空题
| x2 |
| a2 |
| y2 |
| b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)有对称中心的曲线叫有心曲线,如圆、椭圆、双曲线都是有心曲线,过有心曲线的中心的弦叫有心曲线的直径,有心曲线有许多类似的优美性质。
(1)定理:过圆
上异于直径两端点的任意一点与直径两端点的连线斜率之积为定值
.试写出该定理在椭圆
中的类似结论;
(2)定理:圆
的两条互相垂直的直径称为共轭直径,且这两条共轭直径与圆相交得到的四边形的面积为定值
.在椭圆中两条斜率之积为
的直径称为共轭直径,试探究椭圆
中两条共轭直径与椭圆相交得到的四边形的面积的类似结论,并加以证明.
查看答案和解析>>
科目:高中数学 来源:2009-2010学年湖南省长沙市长郡中学高二(上)期中数学试卷(解析版) 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com