【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2.E是PB的中点. (Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值为
,求直线PA与平面EAC所成角的正弦值.![]()
【答案】证明:(Ⅰ)∵PC⊥平面ABCD,AC平面ABCD,∴AC⊥PC, ∵AB=2,AD=CD=1,∴AC=BC=
,
∴AC2+BC2=AB2 , ∴AC⊥BC,
又BC∩PC=C,∴AC⊥平面PBC,
∵AC平面EAC,∴平面EAC⊥平面PBC.
(Ⅱ)如图,以C为原点,取AB中点F,
、
、
分别为x轴、y轴、z轴正向,建立空间直角坐标系,则C(0,0,0),A(1,1,0),B(1,﹣1,0).
设P(0,0,a)(a>0),则E(
,﹣
,
),
=(1,1,0),
=(0,0,a),
=(
,﹣
,
),
取
=(1,﹣1,0),则
=
=0,
为面PAC的法向量.
设
=(x,y,z)为面EAC的法向量,则
=
=0,
即
取x=a,y=﹣a,z=﹣2,则
=(a,﹣a,﹣2),
依题意,|cos<
,
>|=
=
=
,则a=2.
于是
=(2,﹣2,﹣2),
=(1,1,﹣2).
设直线PA与平面EAC所成角为θ,则sinθ=|cos<
,
>|=
=
,
即直线PA与平面EAC所成角的正弦值为
.![]()
【解析】(Ⅰ)证明平面EAC⊥平面PBC,只需证明AC⊥平面PBC,即证AC⊥PC,AC⊥BC;(Ⅱ)根据题意,建立空间直角坐标系,用坐标表示点与向量,求出面PAC的法向量
=(1,﹣1,0),面EAC的法向量
=(a,﹣a,﹣2),利用二面角P﹣A C﹣E的余弦值为
,可求a的值,从而可求
=(2,﹣2,﹣2),
=(1,1,﹣2),即可求得直线PA与平面EAC所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】有一个容量为100的样本,其频率分布直方图如图所示,已知样本数据落在区间[10,12)内的频数比样本数据落在区间[8,10)内的频数少12,则实数m的值等于( ) ![]()
A.0.10
B.0.11
C.0.12
D.0.13
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=logax(a>0且a≠1)在区间[1,2]上的最大值与函数g(x)=﹣
在区间[1,2]上的最大值互为相反数.
(1)求a的值;
(2)若函数F(x)=f(x2﹣mx﹣m)在区间(﹣∞,1﹣
)上是减函数,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体ABCD﹣A1B1C1D1的棱长为1,给出下列四个命题: ①对角线AC1被平面A1BD和平面B1 CD1三等分;
②正方体的内切球、与各条棱相切的球、外接球的表面积之比为1:2:3;
③以正方体的顶点为顶点的四面体的体积都是
;
④正方体与以A为球心,1为半径的球在该正方体内部部分的体积之比为6:π
其中正确命题的序号为 . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com