精英家教网 > 高中数学 > 题目详情
5.在平面直角坐标系中,若点(1,1)的坐标满足线性约束条件:$\left\{\begin{array}{l}{ax+by≤2}\\{by-ax≤2}\\{ay≥1}\end{array}\right.$,则$\frac{b}{a}$的取值范围是(-∞,1].

分析 先画出满足约束条件的平面区域,结合$\frac{b}{a}$的几何意义判断即可.

解答 解:将点(1,1)代入$\left\{\begin{array}{l}{ax+by≤2}\\{by-ax≤2}\\{ay≥1}\end{array}\right.$,
得:$\left\{\begin{array}{l}{a+b≤2}\\{b-a≤2}\\{a≥1}\end{array}\right.$,画出满足约束条件的平面区域,如图示:

由$\left\{\begin{array}{l}{a=1}\\{a+b=2}\end{array}\right.$解得A(1,1),
而$\frac{b}{a}$的几何意义表示过平面区域内的点与原点的直线的斜率,
由图象得$\frac{b}{a}$≤1,
故答案为:(-∞,1].

点评 本题考察了简单的线性规划问题,考察数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点为F1、F2,P是双曲线上的一点(P不在x轴上),△PF1F2的内切圆与x轴切与点A,且A到该双曲线渐近线的距离为$\frac{b}{3}$,则双曲线的离心率为(  )
A.2B.3C.$\sqrt{3}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\frac{lo{g}_{2}x-1}{2lo{g}_{2}x+1}$(x>2),已知f(x1)+f(x2)=$\frac{1}{2}$,则f(x1x2)的最小值=$\frac{4}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=-3${∫}_{\frac{π}{2}}^{\frac{3π}{2}}$cosxdx,则二项式(x2+x+y)a展开式中x5y2项的系数为(  )
A.120B.80C.60D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知△ABC的三个内角A,B,C所对应的边长分别为a,b,c,B=$\frac{π}{4}$,b=4.则ac的最大值为8(2+$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x>1,y>0,xy+x-y=2$\sqrt{2}$,则xy-x-y等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{{2}^{x}+b}{{2}^{x}+a}$,且f(1)=$\frac{1}{3}$,f(0)=0
(1)求函数f(x)的解析式;
(2)判断函数f(x)在定义域上的单调性,并证明;
(3)求证:方程f(x)-lnx=0至少有一根在区间(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设点O为△ABC内的一点,$\overrightarrow{OB}$•$\overrightarrow{OC}$=$\overrightarrow{OC}$•$\overrightarrow{OA}$=$\overrightarrow{OA}$•$\overrightarrow{OB}$,则点O是△ABC的垂心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知关于x的方程2x2-($\sqrt{3}$+1)x+m=0的两根为sinθ和cosθ,θ∈[0,2π].求
(1)$\frac{sinθ}{1-\frac{1}{tanθ}}$+$\frac{cosθ}{1-tanθ}$的值
(2)m的值
(3)方程的两根及θ的值.

查看答案和解析>>

同步练习册答案