精英家教网 > 高中数学 > 题目详情
(2013•朝阳区一模)在下列命题中,
①“α=
π
2
”是“sinα=1”的充要条件;
(
x3
2
+
1
x
)4
的展开式中的常数项为2;
③设随机变量ξ~N(0,1),若P(ξ≥1)=p,则P(-1<ξ<0)=
1
2
-p

其中所有正确命题的序号是(  )
分析:①利用特殊值α=
2
,判断出为假命题.
②利用二项展开式的通项公式求出第r+1项,令x的指数为0得常数项.
③根据随机变量ξ~N(0,1),正态曲线关于x=0对称,得到对称区间对应的概率相等,根据大于1的概率得到小于-1的概率,根据对称轴一侧的区间的概率是
1
2
,得到结果.
解答:解:①是假命题.α=
π
2
,是能推得sinα=1,反之,sinα=1,α可以为
2
或其他数值.
②:(
x3
2
+
1
x
)
4
的通项为T r+1=C
 
r
4
(
x3
2
)4-r
1
x
r=2r-4C4rx12-4r
令12-4r=0得r=3
∴展开式的常数项为T4=
1
2
C43=2;正确;
③:∵随机变量ξ~N(0,1),
∴正态曲线关于x=0对称,
∵P(ξ≥1)=p,
∴P(ξ<-1)=p,
∴P(-1<ξ<0)=
1
2
-p,正确.
故选C.
点评:本题考查命题真假的判断,考查了充要条件、二项式定理、正态分布等知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•朝阳区一模)已知函数f(x)=
3
2
sinωx-sin2
ωx
2
+
1
2
(ω>0)的最小正周期为π.
(Ⅰ)求ω的值及函数f(x)的单调递增区间;
(Ⅱ)当x∈[0,
π
2
]
时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)若直线y=x+m与圆x2+y2+4x+2=0有两个不同的公共点,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)盒子中装有四张大小形状均相同的卡片,卡片上分别标有数字-1,0,1,2.称“从盒中随机抽取一张,记下卡片上的数字后并放回”为一次试验(设每次试验的结果互不影响).
(Ⅰ)在一次试验中,求卡片上的数字为正数的概率;
(Ⅱ)在四次试验中,求至少有两次卡片上的数字都为正数的概率;
(Ⅲ)在两次试验中,记卡片上的数字分别为ξ,η,试求随机变量X=ξ•η的分布列与数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)已知函数f(x)=x2-(a+2)x+alnx+2a+2,其中a≤2.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,2]上有且只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•朝阳区一模)设τ=(x1,x2,…,x10)是数1,2,3,4,5,6,7,8,9,10的任意一个全排列,定义S(τ)=
10k=1
|2xk-3xk+1|
,其中x11=x1
(Ⅰ)若τ=(10,9,8,7,6,5,4,3,2,1),求S(τ)的值;
(Ⅱ)求S(τ)的最大值;
(Ⅲ)求使S(τ)达到最大值的所有排列τ的个数.

查看答案和解析>>

同步练习册答案