精英家教网 > 高中数学 > 题目详情

在区间[-1,1]上任意取两点a,b,方程x2+ax+b=0的两根均为实数的概率为P,则P的取值范围为________.


分析:根据题意先确定是几何概型中的面积类型,由方程x2+ax+b2=0的两根均为实数,则必须有△≥0,求出构成的区域面积,再求出在区间[-1,1]上任取两个数a,b构成的区域面积,再求两面积的比值.
解答:方程x2+ax+b2=0的两根均为实数,
△=a2-4b≥0,
b<
建立平面直角坐标系中,两坐标轴分别为a轴,b轴
不等式表示抛物线的下方区域
计算抛物线b=与直线a=±1,b=1围成的区域面积S
s∈(
直线a=±1,b=±1围成的正方形面积是2×2=4
那么方程两根均为实数的概率p
p=
∴方程x2+ax+b2=0的两根均为实数的概率范围为(
故答案为:(
点评:本题主要考查概率的建模和解模能力,本题是面积类型,思路是先用线性规划求得试验的全部构成的面积和构成事件的区域面积,再求比值
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年江西省新余四中高三(上)第一次周周练数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市会昌中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省五校协作体高二(上)联合竞赛数学试卷(文科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市会昌中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省吉安市白鹭洲中学高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

同步练习册答案