精英家教网 > 高中数学 > 题目详情
设a1,a2,…,an为实数,证明:
a1+a2+…+an
n
a21
+a22
+…+
a2n
n
证明:不妨设a1≤a2≤…≤an,则由排序原理得:
a12+a22+…+an2=a1a1+a2a2+…+anan
a12+a22+…+an2≤a1a2+a2a3+…+ana1
a12+a22+…+an2≤a1a3+a2a4+…+an-1a1+ana2

a12+a22+…+an2≤a1an+a2a1+…+anan-1
将上述n个式子相加,得:n(a12+a22+…+an2)≤(a1+a2+…+an2
上式两边除以n2,并开方可得:
a1+a2+…+an
n
a21
+a22
+…+
a2n
n
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A1、A2是椭圆
x2
9
+
y2
4
=1
=1的长轴两个端点,P1、P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为(  )
A、
x2
9
+
y2
4
=1
B、
y2
9
+
x2
4
=1
C、
x2
9
-
y2
4
=1
D、
y2
9
-
x2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

10、设a1,a2,…,an是1,2,…,n的一个排列,把排在ai的左边且比ai小的数的个数称为ai的顺序数(i=1,2,…,n).如在排列6,4,5,3,2,1中,5的顺序数为1,3的顺序数为0.则在由1、2、3、4、5、6、7、8这八个数字构成的全排列中,同时满足8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉安县模拟)设a1,a2,…,an是正整数1,2,3…n的一个排列,令bj表示排在j的左边且比j大的数的个数,bj称为j的逆序数,如在排列3,5,1,4,2,6中,5的逆序数是0,2的逆序数是3,则由1至9这9个数字构成的所有排列中,满足1的逆序数是2,2的逆序数是3,5的逆序数是3的不同排列种数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:044

设A1、A2是椭圆+=1(a>b>0)长轴的两个端点,P1P2是垂直于x轴的弦,求直线A1P1、A2P2的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A1、A2是椭圆+=1(a>b>0)长轴的两个端点,P1P2是垂直于x轴的弦,求直线A1P1、A2P2的交点P的轨迹方程.

 

查看答案和解析>>

同步练习册答案