(本小题满分13分)
如图,已知椭圆
的焦点为
、
,离心率为
,过点
的直线
交椭圆
于
、
两点.
![]()
(1)求椭圆
的方程;
(2)①求直线
的斜率
的取值范围;
②在直线
的斜率
不断变化过程中,探究
和
是否总相等?若相等,请给出证明,若不相等,说明理由.
(1)
(2)
(3)![]()
【解析】
试题分析:解:(1)由已知条件知,
,得
,又
,
所以椭圆
的方程为
…………4分
(2)直线
的方程为
,
联立
,得
………6分
① 由于直线
与椭圆
相交,所以
,
解得直线
的斜率
的取值范围是
………8分
②
和
总相等.证明:设
,则
…………9分
所以![]()
![]()
![]()
………11分
所以
………13分
考点:本试题考查了椭圆的知识运用。
点评:对于圆锥曲线的方程的求解,一般要通过其性质得到a,b,c的关系式,进而化简运算得到结论,同时在研究直线与圆锥曲线的位置关系的时候,一般都是采用的设而不求的思想,结合韦达定理和判别式来进行,同时得到解决。对于角的相等问题,一般利用其斜率来说明即可。属于中档题。
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数![]()
.
(1)求函数
的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数
在区间
上的图象.
(3)设0<x<
,且方程
有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为
的函数
是奇函数.
(1)求
的值;(2)判断函数
的单调性;
(3)若对任意的
,不等式恒成立
,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱
的所有棱长都为2,
为
的中点。
(Ⅰ)求证:
∥平面
;
(Ⅱ)求异面直线
与
所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知
为锐角,且
,函数
,数列{
}的首项
.
(1) 求函数
的表达式;
(2)在
中,若
A=2
,
,BC=2,求
的面积
(3) 求数列
的前
项和![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com