精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,那么f(18)=p+2q.

分析 由已知中f(ab)=f(a)+f(b),可得f(18)=f(2)+f(3)+f(3),进而得到答案.

解答 解:∵函数f(x)满足f(ab)=f(a)+f(b),
∴f(18)=f(2)+f(3)+f(3),
又∵f(2)=p,f(3)=q,
∴f(18)=p+2q,
故答案为:p+2q

点评 本题考查的知识点是抽象函数的应用,函数求值,转化思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{x^2}{16}-\frac{y^2}{8}=1$的实轴长是(  )
A.2B.$4\sqrt{2}$C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.春节是旅游消费旺季,某大型商场通过对春节前后20天的调查,得到部分日经济收入Q与这20天中的第x天(x∈N+)的部分数据如表:
 天数x(天) 35 79 1113 15
 日经济收入Q(万元)154180198 208210 204190
(1)根据表中数据,结合函数图象的性质,从下列函数模型中选取一个最恰当的函数模型描述Q与x的变化关系,只需说明理由,不用证明.
①Q=ax+b,②Q=-x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)结合表中的数据,根据你选择的函数模型,求出该函数的解析式,并确定日经济收入最高的是第几天;并求出这个最高值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若幂函数y=xm是偶函数,且x∈(0,+∞)时为减函数,则实数m的值可能为(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.集合M={-1,0,1},N={x∈Z|-1<x<1},则M∩N等于(  )
A.{-1,0,1}B.{-1}C.{1}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设实数a∈R,函数$f(x)=a-\frac{2}{{{2^x}+1}}$是R上的奇函数.
(Ⅰ)求实数a的值;
(Ⅱ)当x∈(-1,1)时,求满足不等式f(1-m)+f(1-m2)<0的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正数a,b,c满足2a-b+c=0,则$\frac{ac}{{b}^{2}}$的最大值为(  )
A.8B.2C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,长方体ABCD-A1B1C1D1中,$AB=BC=\frac{1}{2}A{A_1}$,E为BC的中点,则异面直线A1E与D1C1所成角的正切值为(  )
A.2B.$\frac{{4\sqrt{5}}}{5}$C.$\frac{{\sqrt{17}}}{2}$D.$\frac{{2\sqrt{21}}}{21}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈[0,2π))的图象,如图所示,则f(2016)的值为$\frac{{3\sqrt{2}}}{2}$.

查看答案和解析>>

同步练习册答案