精英家教网 > 高中数学 > 题目详情
(2012•石景山区一模)已知函数f(x)=x2+2alnx.
(Ⅰ)若函数f(x)的图象在(2,f(2))处的切线斜率为1,求实数a的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数g(x)=
2x
+f(x)
在[1,2]上是减函数,求实数a的取值范围.
分析:(Ⅰ)先对函数求导,然后由由已知f'(2)=1,可求a
(II)先求函数f(x)的定义域为(0,+∞),要判断函数的单调区间,需要判断导数f′(x)=2x+
2a
x
=
2x2+2a
x

的正负,分类讨论:分(1)当a≥0时,(2)当a<0时两种情况分别求解
(II)由g(x)可求得g′(x),由已知函数g(x)为[1,2]上的单调减函数,可知g'(x)≤0在[1,2]上恒成立,即a≤
1
x
-x2
在[1,2]上恒成立,要求a的范围,只要求解h(x)=
1
x
-x2
,在[1,2]上的最小值即可
解答:解:(Ⅰ)f′(x)=2x+
2a
x
=
2x2+2a
x
…(1分)
由已知f'(2)=1,解得a=-3.…(3分)
(II)函数f(x)的定义域为(0,+∞).
(1)当a≥0时,f'(x)>0,f(x)的单调递增区间为(0,+∞);  …(5分)
(2)当a<0时f′(x)=
2(x+
-a
)(x-
-a
)
x

当x变化时,f'(x),f(x)的变化情况如下:
x (0,
-a
)
-a
(
-a
,+∞)
f'(x) - 0 +
f(x) 极小值
由上表可知,函数f(x)的单调递减区间是(0,
-a
)

单调递增区间是(
-a
,+∞)
.…(8分)
(III)由g(x)=
2
x
+x2+2alnx
g′(x)=-
2
x2
+2x+
2a
x
,…(9分)
由已知函数g(x)为[1,2]上的单调减函数,
则g'(x)≤0在[1,2]上恒成立,
-
2
x2
+2x+
2a
x
≤0
在[1,2]上恒成立.
a≤
1
x
-x2
在[1,2]上恒成立.…(11分)
h(x)=
1
x
-x2
,在[1,2]上h′(x)=-
1
x2
-2x=-(
1
x2
+2x)<0

所以h(x)在[1,2]为减函数.h(x) min=h(2)=-
7
2

所以a≤-
7
2
.…(14分)
点评:本题主要考查了函数的导数的求解,利用导数判断函数的单调区间,体现了分类讨论思想的应用,及函数的恒成立与函数的最值求解的相互转化思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•石景山区一模)在复平面内,复数
2-i
1+i
对应的点位于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若cosA=
2
2
,a=2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”.已知数列{an}中,a1=2,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中n为正整数.
(1)证明:数列{2an+1}是“平方递推数列”,且数列{lg(2an+1)}为等比数列.
(2)设(1)中“平方递推数列”的前n项之积为Tn,即Tn=(2a1+1)(2a2+1)…(2an+1),求数列{an}的通项及Tn关于n的表达式.
(3)记bn=log2an+1Tn,求数列{bn}的前n项之和Sn,并求使Sn>2011的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石景山区一模)圆
x=2cosθ
y=2sinθ+2
的圆心坐标是(  )

查看答案和解析>>

同步练习册答案