设M=2t+it-1×2t-1+…+i1×2+i,其中ik=0或1(k=0,1,2,…,t-1,t∈N+),并记M=(1it-1it-2…i1i)2,对于给定的x1=(1it-1it-2…i1i)2,构造数列{xn}如下:x2=(1iit-1it-2…i2i1)2x3=(1i1iit-1it-2…i3i2)2,x4=(1i2i1iit-1it-2…i4i3)2…,若x1=27,则x4= (用数字作答).
【答案】分析:由M=2t+it-1×2t-1+…+i1×2+i,且ik=0或1,M=(1it-1it-2…i1i)2,x1=(1it-1it-2…i1i)2,得x1的表达式;由x1=27<32,得t=4;从而得i,i1,i2,i3;即得x4的值.
解答:解:由题意,x1=(1it-1it-2…i1i)2=2t+it-1×2t-1+…+i1×2+i=27,知t=4;
∴x1=24+1×23+0×22+1×2+1,这里i=1,i1=1,i2=0,i3=1;
∴x4=(1i2i1iit-1it-2…i4i3)2=2t+i2×2t-1+i1×2t-2+it-1×2t-3+…+i4×2+i3=24+0×23+1×22+1×2+1=23;
故答案为:23.
点评:本题用二进制的知识,考查了数列的综合运用;解题时,关键是弄清题意,结合所学的知识,细心作答.