精英家教网 > 高中数学 > 题目详情
14.高考后,4位考生各自在甲、乙两所大学中任选一所参观,则甲、乙两所大学都有考生参观的概率为(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{7}{8}$

分析 基本事件总数n=24=16,甲、乙两所大学都有考生参观的对立事件是4位考生都参观甲大学或4位考生都参观乙大学,由此利用对立事件概率计算公式能求出甲、乙两所大学都有考生参观的概率.

解答 解:高考后,4位考生各自在甲、乙两所大学中任选一所参观,
基本事件总数n=24=16,
甲、乙两所大学都有考生参观的对立事件是4位考生都参观甲大学或4位考生都参观乙大学,
∴甲、乙两所大学都有考生参观的概率:
p=1-$\frac{1}{16}-\frac{1}{16}$=$\frac{7}{8}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列叙述中错误的是(  )
A.若点P∈α,P∈β且α∩β=l,则P∈l
B.三点A,B,C能确定一个平面
C.若直线a∩b=A,则直线a与b能够确定一个平面
D.若点A∈l,B∈l,且A∈α,B∈α,则l?α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:
(1)有男生、有女生且男生人数多于女生;
(2)某男生一定要担任数学科代表;
(3)某女生必须包含在内,但不担任数学科代表;
( 4 ) 某女生一定担任语文科代表,某男生必须担任科代表,但不担任数学科代表.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],且a∈(0,1)
(Ⅰ)当$a=\frac{1}{2}$时,求f(x)的最小值及此时x的值;
(Ⅱ)当f(x)的最大值不超过3时,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=cosφ\\ y=sinφ\end{array}$(φ为参数),曲线C2的参数方程为$\left\{\begin{array}{l}x=acosφ\\ y=bsinφ\end{array}$(a>b>0,φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点,当α=0时,这两个交点间的距离为2,当α=$\frac{π}{2}$时,这两个交点重合.
(Ⅰ)分别说明C1,C2是什么曲线,并求a与b的值;
(Ⅱ)设当α=$\frac{π}{4}$时,l与C1,C2的交点分别为A1,B1,当α=-$\frac{π}{4}$时,l与C1,C2的交点分别为A2,B2,求直线A1 A2、B1B2的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知A(x,-2),B(3,0),若直线AB的斜率为2,则x的值为(  )
A.-1B.2C.-1或2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,已知a=17,b=24,A=45°,则此三角形(  )
A.无解B.有两解C.有一解D.解的个数不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|x2-2x-8<0},$B=\left\{{x\left|{\frac{6-x}{x+6}≤0}\right.}\right\}$,C={x|x2-5x-m<0},若x∈A∩∁RB是x∈C的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若θ∈($\frac{π}{2}$,π),且cos2θ+cos($\frac{π}{2}$+2θ)=-$\frac{1}{5}$,则tanθ=(  )
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-3D.3

查看答案和解析>>

同步练习册答案