精英家教网 > 高中数学 > 题目详情

甲乙两个班级均为40人,进行一门考试后,按学生考试成绩及格与不及格进行统计,甲班及格人数为36人,乙班及格人数为24人.
(1)根据以上数据建立一个的列联表;(2)试判断成绩与班级是否有关? 
参考公式:

P(K2>k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
  k
0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
 

(1)列联表见解析;(2)成绩与班级有关.

解析试题分析:(1)由题目中所给数据及列联表概念可列出表格;(2)独立性检验需先求出,用查表比较与临界值的大小,判断出两者在多大上可以认为两者相关.
解:(1)2×2列联表如下:

 
不及格
及格
总计
甲班
4
36
40
乙班
16
24
40
总计
20
60
80
 
(2)
,所以有99.5%的把握认为“成绩与班级有关系”.
考点:1.列联表;2.独立性检验.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:

(1)求分数在[50,60)的频率及全班人数;
(2)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题:
本村人口:1200人,户数300,每户平均人口数4人;
应抽户数:30户;
抽样间隔=40;
确定随机数字:取一张人民币,编码的后两位数为12;
确定第一样本户:编码为12的户为第一样本户;
确定第二样本户:12+40=52,52号为第二样本户;
……
(1)该村委会采用了何种抽样方法?
(2)抽样过程中存在哪些问题,并修改.
(3)何处是用简单随机抽样?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是,样本数据分组为

(1)求直方图中的值;
(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

电视传媒为了解某市100万观众对足球节目的收视情况,随机抽取了100名观众进行调查.如图是根据调查结果绘制的观众每周平均收看足球节目时间的频率分布直方图,将每周平均收看足球节目时间不低于1.5小时的观众称为“足球迷”, 并将其中每周平均收看足球节目时间不低于2.5小时的观众称为“铁杆足球迷”.
(1)试估算该市“足球迷”的人数,并指出其中“铁杆足球迷”约为多少人;
(2)该市要举办一场足球比赛,已知该市的足球场可容纳10万名观众.根据调查,如果票价定为100元/张,则非“足球迷”均不会到现场观看,而“足球迷”均愿意前往现场观看.如果票价提高元/张,则“足球迷”中非“铁杆足球迷”愿意前往观看的人数会减少,“铁杆足球迷”愿意前往观看的人数会减少.问票价至少定为多少元/张时,才能使前往现场观看足球比赛的人数不超过10万人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校餐厅新推出四款套餐,某一天四款套餐销售情况的条形图如下.为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:

 
满意
一般
不满意
A套餐
50%
25%
25%
B套餐
80%
0
20%
C套餐
50%
50%
0
D套餐
40%
20%
40%
 

(1)若同学甲选择的是A款套餐,求甲的调查问卷被选中的概率;
(2)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择的是D款套餐的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

小区统计部门随机抽查了区内名网友4月1日这天的网购情况,得到如下数据统计表(图(1))网购金额超过千元的顾客被定义为“网购红人”,网购金额不超过千元的顾客被定义为“非网购红人”.已知“非网购红人”与“网购红人”人数比恰为.
(1)确定的值,并补全频率分布直方图(图(2)).
(2)为进一步了解这名网友的购物体验,从“非网购红人”和“网购红人”中用分层抽样的方法确定人,若需从这人中随机选取人进行问卷调查,设为选取的人中“网购红人”的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

我校为了了解高二级学生参加体育活动的情况,随机抽取了100名高二级学生进行调查.下面是根据调查结果绘制的学生日均参加体育活动时间的频率分布直方图:

将日均参加体育活动时间不低于40分钟的学生称为参加体育活动的“积极分子”.根据已知条件完成下面的列联表,并据此资料,在犯错误的概率不超过5%的前提下,你是否认为参加体育活动的“积极分子”与性别有关?

 
非积极分子
积极分子
合计

 
15
45

 
 
 
合计
 
 
 
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体650人中采用分层抽样的办法抽取50人进行问卷调查,得到了如下列联表:

 
喜欢户外运动
不喜欢户外运动
合计
男性
 
5
 
女性
10
 
 
合计
 
 
50
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是.
(1)请将上面的列联表补充完整;(2)求该公司男、女员工各多少名;
(3)是否有的把握认为喜欢户外运动与性别有关?并说明你的理由.
下面的临界值表仅供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
参考公式:,其中.

查看答案和解析>>

同步练习册答案