精英家教网 > 高中数学 > 题目详情
如图为一简单组合体,其底面 ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)求证:BE∥平面PDA;
(2)求四棱锥B-CEPD的体积.
分析:(1)先证明线面平行,从而可得面面平行,进而可线面平行;
(2)先证明平面PDCE⊥平面ABCD,从而可得BC⊥平面PDCE,进而可求四棱锥B-CEPD的体积.
解答:(1)证明:∵EC∥PD,PD?平面PDA,EC?平面PDA,∴EC∥平面PDA,
同理可得BC∥平面PDA----------(2分)
∵EC?平面EBC,BC?平面EBC且EC∩BC=C
∴平面BEC∥平面PDA-------(4分)
又∵BE?平面EBC,∴BE∥平面PDA-------(6分)
(2)解:∵PD⊥平面ABCD,PD?平面PDCE
∴平面PDCE⊥平面ABCD
∵BC⊥CD,平面PDCE∩平面ABCD=CD
∴BC⊥平面PDCE----------(8分)
S梯形PDCE=
1
2
(PD+EC)•DC=
1
2
×3×2=3
------(10分)
∴四棱锥B-CEPD的体积VB-CEPD=
1
3
S梯形PDCE•BC=
1
3
×3×2=2
.----------(12分)
点评:本题考查面面平行、线面平行的判定与性质,考查四棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)答题卡指定的方框内已给出了该几何体的俯视图,请在方框内画出该几何体的正(主)视图和侧(左)视图;
(2)求四棱锥B-CEPD的体积;
(3)求证:BE∥平面PDA.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC,
(1)求证:BE∥平面PDA;
(2)若N为线段PB的中点,求证:EN⊥平面PDB;
(3)若
PD
AD
=
2
,求平面PBE与平面ABCD所成的二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC,
(1)求证:BE∥平面PDA;
(2)若N为线段PB的中点,求证:EN⊥平面PDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)求证:BE∥平面PDA;
(2)若平面PBE与平面ABCD所成的二面角为45°,则线段PD是线段AD的几倍?

查看答案和解析>>

同步练习册答案