精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\frac{1}{2}$x-$\frac{1}{4}$sinx-$\frac{\sqrt{3}}{4}$cosx的图象在点A(x0,f(x0))处的切线斜率为$\frac{1}{2}$,求tanx0的值.

分析 先求函数f(x)的导数,然后令f′(x0)=1,求出x0的值后再求其正切值即可.

解答 解:∵f(x)=$\frac{1}{2}$x-$\frac{1}{4}$sinx-$\frac{\sqrt{3}}{4}$cosx
∴f′(x)=$\frac{1}{2}$-$\frac{1}{4}$cosx+$\frac{\sqrt{3}}{4}$sinx=$\frac{1}{2}$+$\frac{1}{2}$sin(x-$\frac{π}{6}$)
又因为f′(x0)=$\frac{1}{2}$+$\frac{1}{2}$sin(x0-$\frac{π}{6}$)=$\frac{1}{2}$,
∴sin(x0-$\frac{π}{6}$)=0,x0=$\frac{π}{6}$+2kπ (k∈Z);x0=$2kπ+\frac{5π}{6}$,(k∈Z).
∴tanx0=$±\frac{\sqrt{3}}{3}$.
故答案为:$±\frac{\sqrt{3}}{3}$.

点评 本题主要考查导数的几何意义,即函数在某点的导数值等于在该点处切线的斜率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知a>0,a≠1,则f(x)=loga$\frac{2x+1}{x-1}$的图象恒过点(  )
A.(1,0)B.(-2,0)C.(-1,0)D.(1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中,正确的是(  )
A.φ=$\frac{π}{4}$是f(x)=3in(x-2φ)的图象关于y轴对称的充分不必要条件
B.|$\overrightarrow{a}$|-|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|的充要条件是$\overrightarrow{a}$与$\overrightarrow{b}$方向相同
C.a,b,c都为实数,b=$\sqrt{ac}$是a,b,c三数成等比数列的充分不必要条件
D.m=3是直线(m+3)x+my-2=0与mx-6y+5=0互相垂直的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若|z|=1,则|z+$\frac{1}{z}$|的取值范围[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若用5cm的长度表示一个单位长度,则长度为1cm,10cm,15cm的向量的模分别是$\frac{1}{5}$,2,3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,过抛物线x2=4py(p>0)焦点的直线依次交抛物线与圆x2+(y-p)2=p2于点A,B,C,D,则$\overrightarrow{AB}$•$\overrightarrow{CD}$的值是(  )
A.8p2B.4p2C.2p2D.p2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知sinα和cosα是关于x的方程x2-2xsinα+sin2β=0的两个根,求证:2cos2α=cos2β.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=1-3x,f(a)=-8,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知点A的极坐标为($\sqrt{2},π$),直线L的极坐标方程为$ρcos(θ-\frac{π}{4})=a$.
(Ⅰ)若点A在直线l上,求直线L的直角坐标方程;
(Ⅱ)圆C的参数方程为$\left\{\begin{array}{l}x=cosα\\ y=2+sinα\end{array}\right.(α为参数)$,若直线L与圆C相交的弦长为$\sqrt{2}$,求a的值.

查看答案和解析>>

同步练习册答案