如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P
平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G.
(1)求证:平面EFG∥平面A CB1,并判断三角形类型;
(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.
![]()
(1)见解析(2)
·a
(证明(1)用纯粹的几何方法要辗转证明EF∥AC,EG∥B1C,FG∥AB1来证明,而我们借用向量法使问题代数化,运算简洁,思路简单明了.)
(1)分析:要证平面EFG平面ACB1,由题设知只要证BD1垂直平面ACB1即可.
证明:以D为坐标原点,建立空间直角坐标系,如图5,不妨设正方体棱长为a,则A(a,0,0),B(a,a,0),C(0,a,0),D1(0,0,a),B1(a,a,a),E(xE,0,a),F(0,yF,a),G(0,0,zG).
∴
=(-a,-a,a),
=(0,a,a),
(-xE,yF,0),
=(-a,a,0),
=(-a,0,-a),
∵
·
=(-a,-a,a)·(0,a,a)=0,
∴
⊥
,
同理
⊥
,
而
与
不共线且相交于点A,
∴
⊥平面ACB1,又已知
⊥平面EFG,
∴ 平面EFG∥平面ACB1;
又因为
⊥平面EFG,所以
⊥
,
则
·
=0,
即 (-a,-a,a)·(-xE,yF,0)=0,
化简得 xE-yF=0;
同理 xE-zG=0, yF-zG=0,
易得 ![]()
![]()
=![]()
![]()
=![]()
![]()
,
∴ △EFG为正三角形.
(2)解:因为△EFG是正三角形,显然当△EFG与△A1C1D重合时,△EFG的边最长,其面积也最大,此时,
=A1C1=
·a,
∴
= ![]()
=
·sin600
=
(
·a)2·![]()
=
·a2 .
此时EF与B1C的距离即为A1C1与B1C的距离,由于两异面直线所在平面平行,所求距离转化为求点B1到平面 A1C1D的距离,记A1C1与B1D1交于点O1,作O1H∥D1B并交BB1于点H,则O1H⊥平面A1C1D,垂足为O1,则O1(
,
,a),H(a,a,
),而
作为平面A1C1D的法向量,
所以异面直线EF与B1C的距离设为d是
d =
=
=
·a.
(证明(2)时一般要找到求这两平面距离的两点,如图5*,而这两点为K与J,在立体图形中较难确定,且较难想到通过作辅助线DO1,OB1来得到,加上在如此复杂的空间图形中容易思维混乱,但只要借助平面法向量求线段的射影长度的思想,结合题设,使思路清晰明了,最终使问题的解决明朗化;把握这种思想,不管是空间线线距离,线面距离,面面距离问题,一般我们都能转化成点线或点面距离,再借助平面法向量很好地解决了.)
科目:高中数学 来源: 题型:
、如图,ABCD-A1B1C1D1是正方体,P-A1B1C1D1是正四棱锥,且P到平面ABC的距离为
,则异面直线A1P与BC1的距离是( )w.w.w.k.s.5.u.c.o.m
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com