精英家教网 > 高中数学 > 题目详情

有下列四种说法:

①命题:“,使得”的否定是“,都有”;

②已知随机变量服从正态分布,则

③函数图像关于直线对称,且在区间上是增函数;

④设实数,则满足:的概率为。其中错误的个数是      (  )

A、0             B、1              C、2              D、3。

 

【答案】

A

【解析】

试题分析:特称命题的否定是全称命题,所以①正确;由于随机变量服从正态分布,所以高整套分布的均值为1,,故正确;,由可得正确;由几何概率可知,实数,则满足:的概率为,所以正确.故选A.

考点:1.命题的否定;2.正弦函数的性质;3.正态分布的性质.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列四种说法:
①函数y=
1-3x
的值域是{y|y≥0};
②若集合A={x|x2-1=0},B={x|lg(x2-2)=lgx},则A∩B={-1};
③函数y=f(x)与函数y=f(-x)的图象关于直线x=0对称;
④已知A=B=R,对应法则f:x→y=
1
x+1
,则对应f是从A到B的映射.
其中你认为不正确的是
①②④
①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四种说法:
①“若am2<bm2,则a<b”的逆命题为真;
②“命题p∨q为真”是“命题p∧q为真”的必要不充分条件;
③命题“?x0∈R使得x2-x>0”的否定是“?x∈R都有x2-x≤0”;
④若实数x,y∈[0,1],则满足:x2+y2<1的概率为
π
4

其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列四种说法:
①垂直于同一条直线的两条直线平行;
②垂直于同一条直线的两个平面平行;
③垂直于同一个平面的两条直线平行;
④垂直于同一个平面的两个平面平行.
其中正确的说法有
②③
②③
.(只需填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•珠海一模)有下列四种说法:
①命题“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“命题p∨q为真”是“命题p∧q为真”的必要不充分条件;
③“若am2<bm2,则a<b”的逆命题为真;
④若实数x,y∈[0,1],则满足:x2+y2<1的概率为
π
4

其中错误的个数是  (  )

查看答案和解析>>

同步练习册答案