精英家教网 > 高中数学 > 题目详情
17.设当x=θ时,函数f(x)=2sinx-cosx取得最大值,则cosθ=-$\frac{\sqrt{5}}{5}$.

分析 利用辅助角公式化简函数的解析式为函数f(x)=$\sqrt{5}$sin(x+α)(其中,cosα=$\frac{2}{\sqrt{5}}$,sinα=$\frac{1}{\sqrt{5}}$),由题意可得θ+α=2kπ+$\frac{π}{2}$,k∈z,即 θ=2kπ+$\frac{π}{2}$-α,k∈z,再利用诱导公式求得cosθ 的值.

解答 解:当x=θ时,函数f(x)=2sinx-cosx=$\sqrt{5}$($\frac{2}{\sqrt{5}}$sinx-$\frac{1}{\sqrt{5}}$cosx)=$\sqrt{5}$sin(x+α)取得最大值,
(其中,cosα=$\frac{2}{\sqrt{5}}$,sinα=-$\frac{1}{\sqrt{5}}$),
∴θ+α=2kπ+$\frac{π}{2}$,k∈z,即 θ=2kπ+$\frac{π}{2}$-α,k∈z,
∴cosθ=cos(2kπ+$\frac{π}{2}$-α)=cos($\frac{π}{2}$-α)=sinα=-$\frac{\sqrt{5}}{5}$,
故答案为:-$\frac{\sqrt{5}}{5}$.

点评 本题主要考查辅助角公式的应用,正弦函数的最大值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex-kx+k(k∈R).
(1)试讨论函数y=f(x)的单调性;
(2)若该函数有两个不同的零点x1,x2,试求:(i)实数k的取值范围;(ii)证明:x1+x2>4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合S={x|x2-5x+6≥0},T={x|x>0},则S∩T=(  )
A.(0,2]∪[3,+∞)B.[2,3]C.(-∞,2]∪[3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|-2<x<-1或x>0},B={x|a≤x≤b},满足A∩B={x|0<x≤2},A∪B={x|x>-2},求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知幂函数f(x)的图象过点(2,$\frac{1}{4}$),则f(x)的单调减区间为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数y=ex-2mx有小于零的极值点,则实数m的取值范围是(  )
A.m<$\frac{1}{2}$B.0<m<$\frac{1}{2}$C.m>$\frac{1}{2}$D.0<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2+xlnx-1,a∈R,其中e是自然对数的底数.
(1)当a=0时,求函数f(x)的极值;
(2)若f(x)在区间[1,5]上为单调函数,求a的取值范围;
(3)当a=-e时,试判断方程|f(x)+1|=lnx+$\frac{3}{2}$x是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某班要从5名男生与3名女生中选出4人参加学校组织的书法比赛,要求男生、女生都必须至少有一人参加,则共有不同的选择方案种数为65.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知甲、乙两组数据如茎叶图所示,它们的中位数相同,平均数也相同.
(1)求m,n的值;
(2)若从甲、乙两组数据中随机各抽取一个数据,求乙的数据大于甲的数据的概率.

查看答案和解析>>

同步练习册答案