精英家教网 > 高中数学 > 题目详情

    设函数

   (I)若函数处取得极值,求此时函数的单调区间;

   (II)已知不等式恒成立,求的取值范围。

解:(I) 

由条件知

 

 单调减区间为(1,2).

   (II)由已知

恒成立,

 上为增函数,

      

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(09年长郡中学一模文)(13分)

由函数确定数列,函数的反函数能确定数列,若对于任意都有,则称数列是数列的“自反函数列”.

(I)设函数,若由函数确定的数列的自反数列为,求

(Ⅱ)已知正数数列的前n项和,写出表达式,并证明你的结论;

(Ⅲ)在(I)和(Ⅱ)的条件下,,当时,设是数列的前项和,且恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省江南十校高三素质教育联考文科数学试卷(解析版) 题型:解答题

设M是由满足下列条件的函数f(X)构成的集合:

①方程有实数根;

②函数的导数 (满足

(I )若函数为集合M中的任一元素,试证明万程只有一个实根

(II)    判断函^是否是集合M中的元素,并说明理由;

(III)   “对于(II)中函数定义域内的任一区间,都存在,使得”,请利用函数的图象说明这一结论.

 

查看答案和解析>>

同步练习册答案