精英家教网 > 高中数学 > 题目详情
4.计算:($\frac{2}{3}$a${\;}^{\frac{1}{5}}$b${\;}^{\frac{1}{3}}$)•($\frac{3}{4}$a${\;}^{\frac{3}{4}}$b${\;}^{\frac{2}{3}}$)÷(-2a${\;}^{\frac{2}{5}}$b${\;}^{\frac{1}{4}}$).

分析 利用复数指数幂的运算性质即可得出.

解答 解:原式=$\frac{2}{3}×\frac{3}{4}×(-\frac{1}{2})$${a}^{\frac{1}{5}+\frac{3}{4}-\frac{2}{5}}$${b}^{\frac{1}{3}+\frac{2}{3}-\frac{1}{4}}$=-$\frac{1}{4}$${a}^{\frac{11}{20}}$${b}^{\frac{3}{4}}$.

点评 本题考查了分数指数幂的运算性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数g(x)=λx+sinx定义在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上.
(1)若函数g(x)是增函数,求λ的最小值;
(2)当λ=1时,求函数g(x)在区间[-$\frac{π}{2}$,$\frac{π}{2}$]上的极大值;
(3)当λ≥0时,求证:不存在实数t,使得g(x)>t2+λt+1在x∈[-1,1]上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{a{x}^{2}+bx}$,其中a,b是实常数,且a<0,b>0
(1)求函数f(x)的定义域Df和值域Cf
(2)设点集{(x,y)|x∈Df,y∈Cf}构成正方形区域,求a,b需要满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.等差数列{an}中,首项a1=15,公差d=-2,数列{|an|}的前n项和Tn=$\left\{\begin{array}{l}{16n-{n}^{2},n≤8}\\{{n}^{2}-16n+128,n>8}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.f(x)=-2x2+4x-3的增区间为(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.(log63)2+$\frac{lo{g}_{6}18}{lo{g}_{2}6}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.计算(0.25)-2-($\frac{1}{16}$)${\;}^{-\frac{3}{4}}$-lg25-2lg2=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,O1是正方体ABCD-A1B1C1D1的面A1B1C1D1的中心,M是对角线A1C和截面B1D1A的交点,求证:O1、M、A三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合A={x|x=$\frac{k}{3}$,k∈Z},B={x|x=$\frac{k}{6}$,k∈Z},则(  )
A.A$\underset{?}{≠}$BB.A$\underset{?}{≠}$BC.A=BD.A与B无公共元素

查看答案和解析>>

同步练习册答案