精英家教网 > 高中数学 > 题目详情
2.将号码分别为1、2、…、6的六个小球放入一个袋中,这些小球仅号码不同,其余完全相同.甲从袋中摸出一个球,号码为a,放回后,乙从此袋再摸出一个球,其号码为b,则使不等式a-2b+2>0成立的事件发生的概率等于(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 基本事件总数n=6×6=36个,利用列举法求出使不等式a-2b+2>0的基本事件个数,由此能求出使不等式a-2b+2>0成立的事件发生的概率.

解答 解:∵将号码分别为1、2、…、6的六个小球放入一个袋中,这些小球仅号码不同,其余完全相同.
甲从袋中摸出一个球,号码为a,放回后,乙从此袋再摸出一个球,其号码为b,
基本事件总数n=6×6=36个,
要使不等式a-2b+2>0成立,
则当a=1时,b=1;
当a=2时,b=1;
当a=3时,b=1,2;
当a=4时,b=1,2;
当a=5时,b=1,2,3;
当a=6时,b=1,2,3.
故满足a-2b+2>0的基本事件共有m=12个,
∴使不等式a-2b+2>0成立的事件发生的概率p=$\frac{m}{n}=\frac{12}{36}=\frac{1}{3}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若函数$f(x)=\frac{1}{3}a{x^3}+\frac{1}{2}a{x^2}-2ax+2a+1$的图象经过四个象限,则实数a的取值范围是(  )
A.$-\frac{5}{3}<a<-\frac{3}{16}$B.$-\frac{8}{5}<a<-\frac{3}{16}$C.$-\frac{8}{3}<a<-\frac{1}{16}$D.$-\frac{6}{5}<a<-\frac{3}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=loga(x-3)-1(a>0且a≠1)图象过定点P,当直线mx-ny-1=0(m>0,n>0)过点P时,则$\frac{1}{m}$+$\frac{1}{n}$的最小值为(  )
A.4B.2$\sqrt{2}$C.9D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.己知复数z=cosθ+isinθ(i是虚数单位),则$\frac{1+{z}^{2}}{z}$=(  )
A.cosθ+isinθB.2cosθC.2sinθD.isin2θ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=x•ex-1,g(x)=lnx+kx,且f(x)≥g(x)对任意的x∈(0,+∞)恒成立,则实数k的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=mlnx+(4-2m)x+$\frac{1}{x}$(m∈R).
(1)当m≥4时,求函数f(x)的单调区间;
(2)设t,s∈[1,3],不等式|f(t)-f(s)|<(a+ln3)(2-m)-2ln3对任意的m∈(4,6)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=e-|x|+cosπx,给出下列命题:
①f(x)的最大值为2;
②f(x)在(-10,10)内的零点之和为0;
③f(x)的任何一个极大值都大于1.
其中,所有正确命题的序号是①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个总体中有100个个体,随机编号为0,1,2,3,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…10.现用系统抽样方法抽取一个容量为10的样本,若第1组随机抽取的号码为m=6,则在第7组中抽取的号码是(  )
A.66B.76C.63D.73

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.双曲线$\frac{x^2}{16}-\frac{y^2}{8}=1$的实轴长是(  )
A.2B.$4\sqrt{2}$C.$2\sqrt{2}$D.8

查看答案和解析>>

同步练习册答案