精英家教网 > 高中数学 > 题目详情
二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=πr3,观察发现V′=S.则四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W=   
【答案】分析:根据所给的示例及类比推理的规则得出高维的测度的导数是底一维的测度,从而得到W′=V,从而求出所求.
解答:解:∵二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l
三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=πr3,观察发现V′=S
∴四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W,则W′=V=8πr3
∴W=2πr4
故答案为:2πr4
点评:本题考查类比推理,解题的关键是理解类比的规律,解题的关键主要是通过所给的示例及类比推理的规则得出高维的测度的导数是底一维的测度,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•连云港一模)二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=
43
πr3,观察发现V′=S.则四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W=
2πr4
2πr4

查看答案和解析>>

科目:高中数学 来源:2013届浙江省温州市高二第二学期期中考试理科数学(解析版) 题型:填空题

二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)Sπr2;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)Vπr3;四维空间中“超球”的三维测度V=8πr3,则猜想其四维测度     .

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省保定市高二(下)期中数学试卷(理科)(解析版) 题型:填空题

二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=πr3,观察发现V′=S.则四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W=   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省连云港市高三(上)期末数学试卷(解析版) 题型:填空题

二维空间中圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2,观察发现S′=l;三维空间中球的二维测度(表面积)S=4πr2,三维测度(体积)V=πr3,观察发现V′=S.则四维空间中“超球”的三维测度V=8πr3,猜想其四维测度W=   

查看答案和解析>>

同步练习册答案