精英家教网 > 高中数学 > 题目详情
4.函数f(x)=$\sqrt{2sin(2x-\frac{π}{3})-1}$+lg(25-x2)定义域为(-5,-$\frac{17π}{12}$]∪[-$\frac{3π}{4}$,-$\frac{5π}{12}$]∪[$\frac{π}{4}$,$\frac{7π}{12}$]∪[$\frac{5π}{4}$,$\frac{19π}{12}$].

分析 要使函数有意义,只需满足$\left\{\begin{array}{l}{2sin(2x-\frac{π}{3})-1≥0}\\{25-x^2>0}\end{array}\right.$,再根据三角函数的图象和性质解不等式.

解答 解:要使函数f(x)=$\sqrt{2sin(2x-\frac{π}{3})-1}$+lg(25-x2)有意义,
则$\left\{\begin{array}{l}{2sin(2x-\frac{π}{3})-1≥0}\\{25-x^2>0}\end{array}\right.$,
由不等式25-x2>0解得x∈(-5,5),---------①
由不等式2sin(2x-$\frac{π}{3}$)-1≥0解得,sin(2x-$\frac{π}{3}$)≥$\frac{1}{2}$,
所以,2x-$\frac{π}{3}$∈[2kπ+$\frac{π}{6}$,2kπ+$\frac{5π}{6}$](k∈Z),
解得,x∈[kπ+$\frac{π}{4}$,kπ+$\frac{7π}{12}$],-------------②
综合①②,对k讨论如下:
当k=0时,x∈[$\frac{π}{4}$,$\frac{7π}{12}$];
当k=1时,x∈[$\frac{5π}{4}$,$\frac{19π}{12}$];($\frac{19π}{12}$≈4.97<5)
当k=-1时,x∈[-$\frac{3π}{4}$,-$\frac{5π}{12}$];
当k=-2时,x∈(-5,-$\frac{17π}{12}$];
因此,原函数的定义域为:(-5,-$\frac{17π}{12}$]∪[-$\frac{3π}{4}$,-$\frac{5π}{12}$]∪[$\frac{π}{4}$,$\frac{7π}{12}$]∪[$\frac{5π}{4}$,$\frac{19π}{12}$].

点评 本题主要考查了函数定义域的解法,涉及对数函数的定义域和三角不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在正项数列{an}中,a1=$\frac{1}{3}$,an+1=an+($\frac{{a}_{n}}{n}$)2(n∈N*
(1)判断数列{an}的单调性,并证明你的结论;
(2)求证:对n∈N*都有:$\frac{1}{3}$≤an<1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=x+a|x-1|在(0,+∞)上有最大值,则实数a的取值范围是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知三点A($\sqrt{3}+1$,1),B(1,1),C(1,2),则<$\overrightarrow{CA}$,$\overrightarrow{CB}$>=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=x2-3x+3,x∈[0,3]的值域[$\frac{3}{4}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{1}{2}$cos(2x-φ)(0<φ<π),其图象过点($\frac{π}{6}$,$\frac{1}{2}$).
(1)求φ的值;
(2)求函数y=f(x)的单调递增区间,对称中心;
(3)将函数y=f(x)的图象上各点的横坐际缩短倒原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A,B,P三点共线,O为平面内任意一点.若凉$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+2$\overrightarrow{OB}$,则实数λ的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)为一次函数,且单调递增,满足f[f(x)]=$\frac{1}{4}$x-$\frac{3}{4}$,若对于数列{an}满足:a1=-1,a2=2,an+1=4f(an)-an-1+4(n≥2).
(Ⅰ)试求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}+2}{n}$×($\frac{1}{2}$)n-1,数列{bn}的前n项的和为Sn求证:Sn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)=$\left\{\begin{array}{l}{0,x>0}\\{1,x=0}\\{2x-1,x<0}\end{array}\right.$,则f(f[f(6)])的值是(  )
A.0B.1C.-1D.3

查看答案和解析>>

同步练习册答案