精英家教网 > 高中数学 > 题目详情
已知f(n)=(2n+7)3n+9,存在自然数m,使得对任意正整数n,都能使m整除f(n),猜测出最大的m的值。并用数学归纳法证明你的猜测是正确的。
m值等于36
本试题主要考查了归纳猜想的运用,以及数学归纳法的证明。
∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除
然后证明n=1,2时,由上得证,设n=k(k≥2)时,
f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,
f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2?(k≥2) 证明得到。解析 ∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36
∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除 
证明 n=1,2时,由上得证,设n=k(k≥2)时,
f(k)=(2k+7)·3k+9能被36整除,则n=k+1时,
f(k+1)-f(k)=(2k+9)·3k+1?-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k
=(4k+20)·3k=36(k+5)·3k-2?(k≥2) f(k+1)能被36整除
∵f(1)不能被大于36的数整除,∴所求最大的m值等于36
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)本题理科做.
)。
(1)求出的值;
(2)求证:数列的各项均为奇数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
用数学归纳法证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是否存在常数,使等式对于一切都成立?若不存在,说明理由;若存在,请用数学归纳法证明?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设关于正整数的函数
(1)求
(2)是否存在常数使得对一切自然数都成立?并证明你的结论

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用数学归纳法证明:1+++时,在第二步证明从n=k到n=k+1成立时,左边增加的项数是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

利用数学归纳法证明“1+a+a2+…+an+1 =, (a≠1,n∈N)”时,在验证n=1成立时,左边应该是  (   )
A.1B.1+aC.1+a+a2D.1+a+a2+a3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用数学归纳法证明:
时,成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题


用数学归纳法证的过程中,当n=k到n=k+1时,左边所增加的项为________________

查看答案和解析>>

同步练习册答案