精英家教网 > 高中数学 > 题目详情
12.对任意实数x,若不等式4x-m•2x+2>0恒成立,则实数m的取值范围是(  )
A.-2$\sqrt{2}$<m<2$\sqrt{2}$B.-2<m<2C.m≤2$\sqrt{2}$D.-2≤m≤2

分析 设2x=t,t>0,则t2-tm+2=(t-$\frac{m}{2}$)2+2-$\frac{{m}^{2}}{4}$≥$2-\frac{{m}^{2}}{4}$>0,由此能求出实数m的取值范围.

解答 解:设2x=t,t>0,
∵任意实数x,若不等式4x-m•2x+2>0恒成立,
∴t2-tm+2>0恒成立,
∴t2-tm+2=(t-$\frac{m}{2}$)2+2-$\frac{{m}^{2}}{4}$≥$2-\frac{{m}^{2}}{4}$>0,
解得-2$\sqrt{2}$<m<2$\sqrt{2}$.
故选:A.

点评 本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意函数性质、换元法、配方法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.△ABC的内角A,B,C的对边分别为a,b,c,已知b=1,B=$\frac{π}{6}$,C=$\frac{π}{4}$,则△ABC的面积为(  )
A.$\frac{{\sqrt{3}+1}}{4}$B.+1C.$\frac{{\sqrt{3}-1}}{4}$D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)={({\frac{1}{3}})^x}-{x^2}$,若f(x0)=m,x1∈(0,x0),x2∈(x0,+∞),则(  )
A.f(x1)≥m,f(x2)<mB.f(x1)<m,f(x2)>mC.f(x1)<m,f(x2)<mD.f(x1)>m,f(x2)>m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合A={x||x-1|<1},B={x|-2≤x<2},则A∩B=(  )
A.(0,2)B.[0,2)C.[-2,0)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C的顶点为坐标原点,焦点F(1,0),其准线与x轴的交点为K,过点K的直线l与C交于A,B两点,点A关于x轴的对称点为D.
(1)证明:点F在直线BD上;
(2)设$\overrightarrow{FA}$•$\overrightarrow{FB}$=$\frac{8}{9}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$=(x,2,2),$\overrightarrow{b}$=(2,y,-2),$\overrightarrow{c}$=(3,1,z),$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$⊥$\overrightarrow{c}$.
(1)求向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$;
(2)求向量($\overrightarrow{a}$+$\overrightarrow{c}$)与($\overrightarrow{b}$+$\overrightarrow{c}$)所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题:
①命题“?x∈R,都有x2-x+1≥$\frac{3}{4}$”的否定是“?x∈R,使x2-x+1<$\frac{3}{4}$”
②命题“设向量$\overrightarrow{a}$=(4sinα,3),$\overrightarrow{b}$=(2,3cosα),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则α=$\frac{π}{4}$的逆命题、否命题、逆否命题中真命题的个数为2;
③集合A={x|x2-x=0},B={y|y=-lg(sinx)},C={y|y=$\sqrt{1-{t}^{2}}$}则x∈A是x∈B∩C的充分不必要条件. 
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在各项为正数的等比数列{an}中,a1=2,且2a1,a3,3a2成等差数列.
(1)求数列{an}的通项公式;
(2)设Sn为{an}的前n项和,${b_n}=\frac{{{a_{n+1}}}}{{{S_n}{S_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.空间中任意放置的棱长为2的正四面体ABCD.下列命题正确的是个数是(  ) 个
①正四面体ABCD的主视图面积可能是$\sqrt{2}$;
②正四面体ABCD的主视图面积可能是$\frac{2\sqrt{6}}{3}$;
③正四面体ABCD的主视图面积可能是$\sqrt{3}$;
④正四面体ABCD的主视图面积可能是2
⑤正四面体ABCD的主视图面积可能是4.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案